Carmela Dell’Aversano
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carmela Dell’Aversano.
Journal of the American Chemical Society | 2012
Patrizia Ciminiello; Carmela Dell’Aversano; Emma Dello Iacovo; Ernesto Fattorusso; Martino Forino; Laura Grauso; Luciana Tartaglione; Franca Guerrini; Laura Pezzolesi; Rossella Pistocchi; Silvana Vanucci
Since 2005, the benthic dinoflagellate Ostreopsis cf. ovata has bloomed across the Mediterranean basin, provoking serious toxic outbreaks. LC/MS studies have identified a number of palytoxin-like compounds, termed ovatoxins, along with trace amounts of putative palytoxin as the causative agents of the O. cf. ovata -related human sufferings. So far, any risk assessment for ovatoxins as well as establishment of their allowance levels in seafood has been prevented by the lack of pure toxins. The present paper reports on the isolation, NMR-based structural determination, and preliminary mouse lethality evaluation of ovatoxin-a, the major toxic compound contained in O. cf. ovata extracts. Availability of pure ovatoxin-a will open the double prospect of fully evaluating its toxicity and preparing reference standards to be employed in LC/MS quantitative analyses. Elucidation of ovatoxin-as complex structure will ultimately herald the understanding of the molecular bases of ovatoxins bioactivity.
Toxicon | 2011
Patrizia Ciminiello; Carmela Dell’Aversano; Emma Dello Iacovo; Ernesto Fattorusso; Martino Forino; Luciana Tartaglione
The state of the art of LC-MS of palytoxin and its analogues is reported in the present review. MS data for palytoxin, 42-hydroxy-palytoxin, ostreocin-D, mascarenotoxins, and ovatoxins, obtained using different ionization techniques, namely fast-atom bombardment (FAB), matrix assisted laser desorption ionization (MALDI), and electrospray ionization (ESI), are summarized together with the LC-MS methods used for their detection. Application of the developed LC-MS methods to both plankton and seafood analysis is also reported, paying attention to the extraction procedures used and to limits of detection (LOD) and quantitation (LOQ) achieved. In a research setting, LC-MS has shown a good potential in determination of palytoxin and its analogues from various sources, but, in a regulatory setting, routine LC-MS analysis of palytoxins is still at a preliminary stage. The LOQ currently achieved in seafood analysis appears insufficient to detect palytoxins in shellfish extract at levels close to the tolerance limit for palytoxins (30 μg/kg) proposed by the European Food Safety Authority (EFSA, 2009). In addition, lacking of certified reference standard of palytoxins as well as of validation studies for the proposed LC-MS methods represent important issues that should be faced for future perspectives of LC-MS technique.
Chemical Research in Toxicology | 2012
Patrizia Ciminiello; Carmela Dell’Aversano; Emma Dello Iacovo; Ernesto Fattorusso; Martino Forino; Luciana Tartaglione; Cecilia Battocchi; Rita Crinelli; Elisa Carloni; Mauro Magnani; Antonella Penna
Currently, the benthic dinoflagellate Ostreopsis cf. ovata represents a serious concern to human health in the whole Mediterranean basin due to the production of palytoxin congeners, a putative palytoxin and ovatoxins (ovatoxin-a, -b, -c, -d/-e), listed among the most potent marine toxins. High resolution liquid chromatography-mass spectrometry (HR LC-MS) based investigation of a North Western Adriatic strain of Ostreopsis cf. ovata collected at Portonovo (Italy) in 2008 is reported herein. Toxin profile was different from those previously reported for other O. cf. ovata, both qualitatively and quantitatively. For the first time, ovatoxin-a did not dominate the toxin profile, and a new palytoxin congener, here named ovatoxin-f, was detected. Ovatoxin-f and its elemental formula present C(2)H(4) more than ovatoxin-a. HR CID MS(n) experiments allowed us to restrict structural differences between ovatoxin-a and -f to the region between C-95 and C-102, a region not previously been described to be modified in other palytoxins. Ovatoxin-f represents the major component of the toxin profile of the analyzed strain accounting for 50% of the total toxin content, while ovatoxin-a, the dominant toxin in most of the Mediterranean O. cf. ovata strains we have analyzed so far, is the second major component of the toxin profile (23%). Thus, the presence of ovatoxin-f should be taken into account when monitoring programs for palytoxin-like compounds in microalgae and/or seawater are carried out.
Water Research | 2012
Laura Pezzolesi; Franca Guerrini; Patrizia Ciminiello; Carmela Dell’Aversano; Emma Dello Iacovo; Ernesto Fattorusso; Martino Forino; Luciana Tartaglione; Rossella Pistocchi
In the Mediterranean Sea, blooms of Ostreopsis cf. ovata and Ostreopsis siamensis have become increasingly frequent in the last decade and O. cf. ovata was found to produce palytoxin-like compounds (putative palytoxin, ovatoxin-a, -b, -c, -d and -e), a class of highly potent toxins. The environmental conditions seem to play a key role in influencing the abundance of Ostreopsis spp. High cell densities are generally recorded in concomitance with relatively high temperature and salinity and low hydrodynamics conditions. In this study the effects of temperature and salinity on the growth and toxicity of an Adriatic O. cf. ovata isolate were investigated. The highest growth rates of the Adriatic strain were recorded for cultures grown at 20 °C and at salinity values of 36 and 40, in accordance with natural bloom surveys. Toxicity was affected by growth conditions, with the highest toxin content on a per cell basis being measured at 25 °C and salinity 32. However, the highest total toxin content on a per litre basis was recorded at 20 °C and salinity 36, since under such conditions the growth yield was the highest. O. cf. ovata had lethal effects on Artemia nauplii and juvenile sea basses, and produced haemolysis of sheep erythrocytes. A comparison between haemolysis neutralization assay and HR LC-MS results showed a good correlation between haemolytic effect and total toxin content measured through HR LC-MS. Considering the increasing need for rapid and sensitive methods to detect palytoxin in natural samples, the haemolytic assay appears a useful method for preliminary quantification of the whole of palytoxin-like compounds in algal extracts.
Journal of Natural Products | 2008
Carmela Dell’Aversano; John A. Walter; Ian W. Burton; David Stirling; Ernesto Fattorusso; Michael A. Quilliam
Chemical analyses of plankton and highly toxic mussel samples collected in eastern Canada during an intense bloom of the dinoflagellate Alexandrium tamarense established the presence of a complex mixture of paralytic shellfish poisoning (PSP) toxins. Application of a newly developed technique, hydrophilic interaction liquid chromatography-mass spectrometry, confirmed the identities of the known toxins and revealed the presence in the mussels of five saxitoxin analogues (M1-M5) that were not present in the plankton. Four of these compounds were isolated and their structures established by tandem mass spectrometry, 1D- and 2D-NMR spectroscopy, and chemical interconversion experiments. One of these was found to be 11beta-hydroxysaxitoxin (M2), while the other three were found to be new saxitoxin analogues, namely, 11beta-hydroxy-N-sulfocarbamoylsaxitoxin (M1), 11,11-dihydroxy-N-sulfocarbamoylsaxitoxin (M3), and 11,11-dihydroxysaxitoxin (M4). Compound M5 remains unidentified because of insufficient material for characterization.
Marine Pollution Bulletin | 2011
Stefano Accoroni; Tiziana Romagnoli; Federica Colombo; Chiara Pennesi; Cristina Gioia Di Camillo; Mauro Marini; Cecilia Battocchi; Patrizia Ciminiello; Carmela Dell’Aversano; Emma Dello Iacovo; Ernesto Fattorusso; Luciana Tartaglione; Antonella Penna; Cecilia Totti
Intense blooms of the benthic dinoflagellate Ostreopsis cf. ovata have occurred in the northern Adriatic Sea since 2006. These blooms are associated with noxious effects on human health and with the mortality of benthic organisms because of the production of palytoxin-like compounds. The O. cf. ovata bloom and its relationships with nutrient concentrations at two stations on the Conero Riviera (northern Adriatic Sea) were investigated in the summer of 2009. O. cf. ovata developed from August to November, with the highest abundances in September (1.3×10(6) cells g(-1) fw corresponding to 63.8×10(3) cells cm(-2)). The presence of the single O. cf. ovata genotype was confirmed by a PCR assay. Bloom developed when the seawater temperature was decreasing. Nutrient concentrations did not seem to affect bloom dynamics. Toxin analysis performed by high resolution liquid chromatography-mass spectrometry revealed a high total toxin content (up to 75 pg cell(-1)), including putative palytoxin and all the ovatoxins known so far.
Marine Drugs | 2012
Rossella Pistocchi; Franca Guerrini; Laura Pezzolesi; Manuela Riccardi; Silvana Vanucci; Patrizia Ciminiello; Carmela Dell’Aversano; Martino Forino; Ernesto Fattorusso; Luciana Tartaglione; Anna Milandri; Marinella Pompei; Monica Cangini; Silvia Pigozzi; Elena Riccardi
The Northern Adriatic Sea is the area of the Mediterranean Sea where eutrophication and episodes related to harmful algae have occurred most frequently since the 1970s. In this area, which is highly exploited for mollusk farming, the first occurrence of human intoxication due to shellfish consumption occurred in 1989, nearly 10 years later than other countries in Europe and worldwide that had faced similar problems. Until 1997, Adriatic mollusks had been found to be contaminated mostly by diarrhetic shellfish poisoning toxins (i.e., okadaic acid and dinophysistoxins) that, along with paralytic shellfish poisoning toxins (i.e., saxitoxins), constitute the most common marine biotoxins. Only once, in 1994, a toxic outbreak was related to the occurrence of paralytic shellfish poisoning toxins in the Adriatic coastal waters. Moreover, in the past 15 years, the Adriatic Sea has been characterized by the presence of toxic or potentially toxic algae, not highly widespread outside Europe, such as species producing yessotoxins (i.e., Protoceratium reticulatum, Gonyaulax spinifera and Lingulodinium polyedrum), recurrent blooms of the potentially ichthyotoxic species Fibrocapsa japonica and, recently, by blooms of palytoxin-like producing species of the Ostreopsis genus. This review is aimed at integrating monitoring data on toxin spectra and levels in mussels farmed along the coast of the Emilia-Romagna region with laboratory studies performed on the species involved in the production of those toxins; toxicity studies on toxic or potentially toxic species that have recently appeared in this area are also reviewed. Overall, reviewed data are related to: (i) the yessotoxins producing species P. reticulatum, G. spinifera and L. polyedrum, highlighting genetic and toxic characteristics; (ii) Adriatic strains of Alexandrium minutum, Alexandrium ostenfeldii and Prorocentrum lima whose toxic profiles are compared with those of strains of different geographic origins; (iii) F. japonica and Ostreopsis cf. ovata toxicity. Moreover, new data concerning domoic acid production by a Pseudo-nitzschia multistriata strain, toxicity investigations on a Prorocentrum cf. levis, and on presumably ichthyotoxic species, Heterosigma akashiwo and Chattonella cf. subsalsa, are also reported.
Environmental Science & Technology | 2014
Patrizia Ciminiello; Carmela Dell’Aversano; Emma Dello Iacovo; Ernesto Fattorusso; Martino Forino; Luciana Tartaglione; Gioia Benedettini; Marzia Onorari; Fabrizio Serena; Cecilia Battocchi; Silvia Casabianca; Antonella Penna
Since the late 1990s, a respiratory syndrome has been repetitively observed in humans concomitant with Ostreopsis spp. blooms (mainly O. cf. ovata) in the Mediterranean area. Previous studies have demonstrated that O. cf. ovata produces analogues of palytoxin (ovatoxins and a putative palytoxin), one of the most potent marine toxins. On the basis of the observed association between O. cf. ovata blooms, respiratory illness in people, and detection of palytoxin complex in algal samples, toxic aerosols, containing Ostreopsis cells and/or the toxins they produce, were postulated to be the cause of human illness. A small scale monitoring study of marine aerosol carried out along the Tuscan coasts (Italy) in 2009 and 2010 is reported. Aerosols were collected concomitantly with O. cf. ovata blooms, and they were analyzed by both PCR assays and LC-HRMS. The results, besides confirming the presence of O. cf. ovata cells, demonstrated for the first time the occurrence of ovatoxins in the aerosol at levels of 2.4 pg of ovatoxins per liter of air. Given the lack of toxicological data on palytoxins by inhalation exposure, our results are only a first step toward a more comprehensive understanding of the Ostreopsis-related respiratory syndrome.
Journal of Chromatography A | 2002
Patrizia Ciminiello; Carmela Dell’Aversano; Ernesto Fattorusso; Martino Forino; Silvana Magno; Roberto Poletti
A liquid chromatography mass spectrometry (LC-MS) method is proposed for the sensitive, specific and direct detection of yessotoxin and its analogues, marine biotoxins which are associated with diarrhetic shellfish poisoning (DSP) and which have been found in the North Adriatic sea since 1995. The LC-MS method provided a detection limit of 70 pg for yessotoxin in full scan mode and was applied to determine the toxic profiles of a number of extracts or partially purified fractions of toxic mussels collected along the Emilia Romagna coasts (Italy) in the period 1995-1999. Detection of a desulfo-yessotoxin derivative from Mytilus galloprovincialis collected in 1998 is also reported.
Food Chemistry | 2016
Martino Forino; Luciana Tartaglione; Carmela Dell’Aversano; Patrizia Ciminiello
Biological properties of fruits of Lycium barbarum (goji berries) have been ascribed to their high content of nutrients and phenolics. Comprehensive studies aimed at unambiguously identifying the phenolic components in goji berries are still lacking. In this paper, we report on the isolation and NMR-based identification of the major phenolics in commercially available goji berries. Together with already known phenolics, including caffeic acid, p-coumaric acid, rutin, scopoletin, N-trans-feruloyl tyramine, and N-cis-feruloyl tyramine, an unreported N-feruloyl tyramine dimer was characterized as the most abundant polyphenol isolated from the berries. Usually divalent molecules show enhanced biological activities than their corresponding monomers.