Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmela Giordano is active.

Publication


Featured researches published by Carmela Giordano.


Frontiers in Neurology | 2014

Neuroactive Peptides as Putative Mediators of Antiepileptic Ketogenic Diets

Carmela Giordano; Maddalena Marchiò; Elena Timofeeva; Giuseppe Biagini

Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal mechanisms involved in the beneficial effects of KDs. In this review, we summarize the current evidence for altered regulation of the synthesis of neuropeptides and peripheral hormones in response to KDs, and we try to define a possible role for specific neuroactive peptides in mediating the antiepileptic properties of diet-induced ketogenesis.


PLOS ONE | 2015

Repeated 6-Hz Corneal Stimulation Progressively Increases FosB/ΔFosB Levels in the Lateral Amygdala and Induces Seizure Generalization to the Hippocampus

Carmela Giordano; Jonathan Vinet; Giulia Curia; Giuseppe Biagini

Exposure to repetitive seizures is known to promote convulsions which depend on specific patterns of network activity. We aimed at evaluating the changes in seizure phenotype and neuronal network activation caused by a modified 6-Hz corneal stimulation model of psychomotor seizures. Mice received up to 4 sessions of 6-Hz corneal stimulation with fixed current amplitude of 32 mA and inter-stimulation interval of 72 h. Video-electroencephalography showed that evoked seizures were characterized by a motor component and a non-motor component. Seizures always appeared in frontal cortex, but only at the fourth stimulation they involved the hippocampus, suggesting the establishment of an epileptogenic process. Duration of seizure non-motor component progressively decreased after the second session, whereas convulsive seizures remained unchanged. In addition, a more severe seizure phenotype, consisting of tonic-clonic generalized convulsions, was predominant after the second session. Immunohistochemistry and double immunofluorescence experiments revealed a significant increase in neuronal activity occurring in the lateral amygdala after the fourth session, most likely due to activity of principal cells. These findings indicate a predominant role of amygdala in promoting progressively more severe convulsions as well as the late recruitment of the hippocampus in the seizure spread. We propose that the repeated 6-Hz corneal stimulation model may be used to investigate some mechanisms of epileptogenesis and to test putative antiepileptogenic drugs.


Glia | 2016

Microglia are less pro‐inflammatory than myeloid infiltrates in the hippocampus of mice exposed to status epilepticus

Jonathan Vinet; Ilia D. Vainchtein; Carlotta Spano; Carmela Giordano; Domenico Bordini; Giulia Curia; Massimo Dominici; Hendrikus Boddeke; Bart J. L. Eggen; Giuseppe Biagini

Activated microglia, astrogliosis, expression of pro‐inflammatory cytokines, blood brain barrier (BBB) leakage and peripheral immune cell infiltration are features of mesial temporal lobe epilepsy. Numerous studies correlated the expression of pro‐inflammatory cytokines with the activated morphology of microglia, attributing them a pro‐epileptogenic role. However, microglia and myeloid cells such as macrophages have always been difficult to distinguish due to an overlap in expressed cell surface molecules. Thus, the detrimental role in epilepsy that is attributed to microglia might be shared with myeloid infiltrates. Here, we used a FACS‐based approach to discriminate between microglia and myeloid infiltrates isolated from the hippocampus 24 h and 96 h after status epilepticus (SE) in pilocarpine‐treated CD1 mice. We observed that microglia do not express MHCII whereas myeloid infiltrates express high levels of MHCII and CD40 96 h after SE. This antigen‐presenting cell phenotype correlated with the presence of CD4pos T cells. Moreover, microglia only expressed TNFα 24 h after SE while myeloid infiltrates expressed high levels of IL‐1β and TNFα. Immunofluorescence showed that astrocytes but not microglia expressed IL‐1β. Myeloid infiltrates also expressed matrix metalloproteinase (MMP)−9 and 12 while microglia only expressed MMP‐12, suggesting the involvement of both cell types in the BBB leakage that follows SE. Finally, both cell types expressed the phagocytosis receptor Axl, pointing to phagocytosis of apoptotic cells as one of the main functions of microglia. Our data suggests that, during early epileptogenesis, microglia from the hippocampus remain rather immune supressed whereas myeloid infiltrates display a strong inflammatory profile. GLIA 2016 GLIA 2016;64:1350–1362


Frontiers in Cellular Neuroscience | 2016

Progressive Seizure Aggravation in the Repeated 6-Hz Corneal Stimulation Model Is Accompanied by Marked Increase in Hippocampal p-ERK1/2 Immunoreactivity in Neurons

Carmela Giordano; Anna Maria Costa; Chiara Lucchi; Giuseppina Leo; Luc Brunel; Jean Alain Fehrentz; Jean Martinez; Antonio Torsello; Giuseppe Biagini

The 6-Hz corneal stimulation test is used to screen novel antiepileptic molecules to overcome the problem of drug refractoriness. Although recognized as a standard test, it has been evaluated only recently in the attempt to characterize the putative neuronal networks involved in seizures caused by corneal stimulation. In particular, by recording from the CA1 region we previously established that the hippocampus participates to propagation of seizure activity. However, these findings were not corroborated by using markers of neuronal activation such as FosB/ΔFosB antigens. In view of this discrepancy, we performed new experiments to characterize the changes in levels of phosphorylated extracellular signal-regulated kinases1/2 (p-ERK1/2), which are also used as markers of neuronal activation. To this aim, mice underwent corneal stimulation up to three different times, in three sessions separated by an interval of 3 days. To characterize a group in which seizures could be prevented by pharmacological treatment, we also considered pretreatment with the ghrelin receptor antagonist EP-80317 (330 μg/kg). Control mice were sham-treated. Video electrocorticographic (ECoG) recordings were obtained from mice belonging to each group of treatment. Animals were finally used to characterize the immunoreactivity for FosB/ΔFosB and p-ERK1/2 in the hippocampus. As previously shown, FosB/ΔFosB levels were highly increased throughout the hippocampus by the first induced seizure but, in spite of the progressively increased seizure severity, they were restored to control levels after the third stimulation. At variance, corneal stimulation caused a progressive increase in p-ERK1/2 immunoreactivity all over the hippocampus, especially in CA1, peaking in the third session. Predictably, EP-80317 administration reduced both duration and severity of seizures, prevented the increase in FosB/ΔFosB levels in the first session, and partially counteracted the increase in p-ERK1/2 levels in the third session. The vast majority of p-ERK1/2 immunopositive cells were co-labeled with FosB/ΔFosB antibodies, suggesting the existence of a relationship between the investigated markers in a subpopulation of neurons activated by seizures. These findings suggest that p-ERK1/2 are useful markers to define the aggravation of seizures and the response to anticonvulsant treatments. In particular, p-ERK1/2 expression clearly identified the involvement of hippocampal regions during seizure aggravation in the 6-Hz model.


Frontiers in Pharmacology | 2017

Involvement of PPARγ in the anticonvulsant activity of EP-80317, a ghrelin receptor antagonist

Chiara Lucchi; Anna Maria Costa; Carmela Giordano; Giulia Curia; Marika Piat; Giuseppina Leo; Jonathan Vinet; Luc Brunel; Jean-Alain Fehrentz; Jean Martinez; Antonio Torsello; Giuseppe Biagini

Ghrelin, des-acyl ghrelin and other related peptides possess anticonvulsant activities. Although ghrelin and cognate peptides were shown to physiologically regulate only the ghrelin receptor, some of them were pharmacologically proved to activate the peroxisome proliferator-activated receptor gamma (PPARγ) through stimulation of the scavenger receptor CD36 in macrophages. In our study, we challenged the hypothesis that PPARγ could be involved in the anticonvulsant effects of EP-80317, a ghrelin receptor antagonist. For this purpose, we used the PPARγ antagonist GW9662 to evaluate the modulation of EP-80317 anticonvulsant properties in two different models. Firstly, the anticonvulsant effects of EP-80317 were studied in rats treated with pilocarpine to induce status epilepticus (SE). Secondly, the anticonvulsant activity of EP-80317 was ascertained in the repeated 6-Hz corneal stimulation model in mice. Behavioral and video electrocorticographic (ECoG) analyses were performed in both models. We also characterized levels of immunoreactivity for PPARγ in the hippocampus of 6-Hz corneally stimulated mice. EP-80317 predictably antagonized seizures in both models. Pretreatment with GW9662 counteracted almost all EP-80317 effects both in mice and rats. Only the effects of EP-80317 on power spectra of ECoGs recorded during repeated 6-Hz corneal stimulation were practically unaffected by GW9662 administration. Moreover, GW9662 alone produced a decrease in the latency of tonic-clonic seizures and accelerated the onset of SE in rats. Finally, in the hippocampus of mice treated with EP-80317 we found increased levels of PPARγ immunoreactivity. Overall, these results support the hypothesis that PPARγ is able to modulate seizures and mediates the anticonvulsant effects of EP-80317.


Neurology | 2018

High plasma levels of ghrelin and des-acyl ghrelin in responders to antiepileptic drugs

Maddalena Marchiò; Laura Roli; Carmela Giordano; Elisa Caramaschi; Azzurra Guerra; Tommaso Trenti; Giuseppe Biagini

Objective To reconsider ghrelin and des-acyl ghrelin plasma levels in children with epilepsy in order to establish a possible relation with response to antiepileptic drugs (AEDs). Methods We designed an observational study in which 114 patients with epilepsy were classified as responders (77) or nonresponders (37) and compared to 59 controls. In these patients, we measured ghrelin and des-acyl ghrelin by immunoassays in blood samples obtained after overnight fast. Results Ghrelin plasma levels were higher (+94%; p < 0.001, Dunn test) in responders compared to controls. Des-acyl ghrelin plasma levels were also higher in the same group (+55%; p < 0.001). In addition, both hormones were unmodified in nonresponders compared to controls. By comparing responders to nonresponders, ghrelin and des-acyl ghrelin, respectively, were +126% (p < 0.001) and +29% (p < 0.001) in patients with a positive response to AEDs. Conclusions These results indicate that ghrelin and des-acyl ghrelin plasma levels are especially high in patients with epilepsy who positively respond to AEDs. In view of the anticonvulsant properties of ghrelin and des-acyl ghrelin, we propose that their higher levels could play a role in modulating the response to AEDs. Moreover, these peptides could be promising markers of response to AEDs.


Pharmaceuticals | 2017

Electrographic Changes Accompanying Recurrent Seizures under Ketogenic Diet Treatment

Chiara Lucchi; Maddalena Marchiò; Elisa Caramaschi; Carmela Giordano; Rocco Giordano; Azzurra Guerra; Giuseppe Biagini

The ketogenic diet (KD) is increasingly used to treat epilepsy refractory to antiepileptic drugs and other neurological disorders. In animal models, the KD was found to increase the threshold to seizures induced by different convulsive stimulations. However, in models in which suprathreshold stimuli were used, a paradoxical seizure worsening was consistently observed in KD-fed animals. To better define this phenomenon, we characterized the electrographic response to seizures induced in mice which were treated with the KD, and then corneally stimulated at 6-Hz in four different sessions. We also evaluated the electroencephalogram (EEG) in three patients in which the KD was associated with a paradoxical worsening of epileptic seizures. Although seizures were initially less severe, a remarkable prolongation of the electrographic response was observed in mice receiving the KD from the second session of 6-Hz corneal stimulation and onwards. The EEG was also markedly altered in the presence of progressive seizure aggravation observed in children treated with the KD, specifically one affected by Lennox–Gastaut syndrome and two by type I lissencephaly. These results suggest that when seizures are induced or recur because of resistance to therapeutic interventions, the KD may change the EEG by potentiating the electrographic epileptic activity.


Clinical Nutrition | 2018

Decreased ghrelin and des-acyl ghrelin plasma levels in patients affected by pharmacoresistant epilepsy and maintained on the ketogenic diet

Maddalena Marchiò; Laura Roli; Carmela Giordano; Tommaso Trenti; Azzurra Guerra; Giuseppe Biagini


XVI Congress of the Italian Society for Neuroscience | 2015

Repeated 6-Hz corneal stimulation progressively increases FosB/∆FosB levels in the lateral amygdala and induces seizure generalization to the hippocampus.

Carmela Giordano; Jonathan Vinet; Giulia Curia; Giuseppe Biagini


XII European Meeting on Glial Cells in Health and Disease | 2015

The phenotypes of microglia and macrophages during epileptogenesis

Jonathan Vinet; Ilia D. Vainchtein; Maria Carlotta Spano; Carmela Giordano; D. Bordini; Massimo Dominici; Bart J. L. Eggen; Giuseppe Biagini

Collaboration


Dive into the Carmela Giordano's collaboration.

Top Co-Authors

Avatar

Giuseppe Biagini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Giulia Curia

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Jonathan Vinet

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Maddalena Marchiò

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Chiara Lucchi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Antonio Torsello

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Anna Maria Costa

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Giuseppina Leo

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Laura Roli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Massimo Dominici

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge