Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmelina Angotti is active.

Publication


Featured researches published by Carmelina Angotti.


Basic Research in Cardiology | 2013

Redox balance and cardioprotection

Francesca Tullio; Carmelina Angotti; Maria-Giulia Perrelli; Claudia Penna; Pasquale Pagliaro

Coronary artery disease is a major cause of morbidity and mortality in the Western countries. Acute myocardial infarction is a serious and often lethal consequence of coronary artery disease, resulting in contractile dysfunction and cell death. It is well known that unbalanced and high steady state levels of reactive oxygen and nitrogen species (ROS/RNS) are responsible for cytotoxicity, which in heart leads to contractile dysfunction and cell death. Pre- and post-conditioning of the myocardium are two treatment strategies that reduce contractile dysfunction and the amount of cell death considerably. Paradoxically, ROS and RNS have been identified as a part of cardioprotective signaling molecules, which are essential in pre- and post-conditioning processes. S-nitrosylation of proteins is a specific posttranslational modification that plays an important role in cardioprotection, especially within mitochondria. In fact, mitochondria are of paramount importance in either promoting or limiting ROS/RNS generation and reperfusion injury, and in triggering kinase activation by ROS/RNS signaling in cardioprotection. These organelles are also the targets of acidosis, which prevents mitochondrial transition pore opening, thus avoiding ROS-induced ROS release. Therefore, we will consider mitochondria as either targets of damage or protection from it. The origin of ROS/RNS and the cardioprotective signaling pathways involved in ROS/RNS-based pre- and post-conditioning will be explored in this article. A particular emphasis will be given to new aspects concerning the processes of S-nitrosylation in the cardioprotective scenario.


Pflügers Archiv: European Journal of Physiology | 2013

Catestatin reduces myocardial ischaemia/reperfusion injury: involvement of PI3K/Akt, PKCs, mitochondrial KATP channels and ROS signalling.

Maria-Giulia Perrelli; Francesca Tullio; Carmelina Angotti; Maria Carmela Cerra; Tommaso Angelone; Bruno Tota; Giuseppe Alloatti; Claudia Penna; Pasquale Pagliaro

Catestatin (CST) limits myocardial ischaemia/reperfusion (I/R) injury with unknown mechanisms. Clearly phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) isoforms, including intra-mitochondrial PKCε, mitochondrial KATP (mitoKATP) channels and subsequent reactive oxygen species (ROS)-signalling play important roles in postconditioning cardioprotection, preventing mitochondrial permeability transition pore (mPTP) opening. Therefore, we studied the role of these extra- and intra-mitochondrial factors in CST-induced protection. Isolated rat hearts and H9c2 cells underwent I/R and oxidative stress, respectively. In isolated hearts CST (75nM, CST-Post) given in early-reperfusion significantly reduced infarct size, limited post-ischaemic contracture, and improved recovery of developed left ventricular pressure. PI3K inhibitor, LY-294002 (LY), large spectrum PKC inhibitor, Chelerythrine (CHE), specific PKCε inhibitor (εV1-2), mitoKATP channel blocker, 5-Hydroxydecanoate (5HD) or ROS scavenger, 2-mercaptopropionylglycine (MPG) abolished the infarct-sparing effect of CST. Notably the CST-induced contracture limitation was maintained during co-infusion of 5HD, MPG or εV1-2, but it was lost during co-infusion of LY or CHE. In H9c2 cells challenged with H2O2, mitochondrial depolarization (an index of mPTP opening studied with JC1-probe) was drastically limited by CST (75nM). Our results suggest that the protective signalling pathway activated by CST includes mitoKATP channels, ROS signalling and prevention of mPTP opening, with a central role for upstream PI3K/Akt and PKCs. In fact, all inhibitors completely abolished CST-infarct-sparing effect. Since CST-anti-contracture effect cannot be explained by intra-mitochondrial mechanisms (PKCε activation and mitoKATP channel opening) or ROS signalling, it is proposed that these downstream signals are part of a reverberant loop which re-activates upstream PKCs, which therefore play a pivotal role in CST-induced protection.


Journal of Cellular and Molecular Medicine | 2013

Pharmacologically active microcarriers influence VEGF-A effects on mesenchymal stem cell survival

Claudia Penna; Maria-Giulia Perrelli; Jean-Pierre Karam; Carmelina Angotti; Claudio Muscari; Claudia N. Montero-Menei; Pasquale Pagliaro

Resistance of transplanted mesenchymal stem cells (MSCs) in post‐ischemic heart is limited by their poor vitality. Vascular‐endothelial‐growth‐factor‐A (VEGF‐A) as such or slowly released by fibronectin‐coated pharmacologically‐active‐microcarriers (FN‐PAM‐VEGF) could differently affect survival kinases and anti‐apoptotic mediator (e.g. Bcl‐2). Therefore VEGF‐A or FN‐PAM‐VEGF could differently enhance cell proliferation, and/or resistance to hypoxia/reoxygenation (H/R) of MSCs. To test these hypotheses MSCs were incubated for 6‐days with VEGF‐A alone or with FN‐PAM‐VEGF. In addition, MSCs pre‐treated for 24‐hrs with VEGF‐A or FN‐PAM‐VEGF were subsequently exposed to H/R (72‐hrs 3% O2 and 3‐hrs of reoxygenation). Cell‐proliferation and post‐hypoxic vitality were determined. Kinases were studied at 30‐min., 1‐ and 3‐days of treatment. Cell‐proliferation increased about twofold (P < 0.01) 6‐days after VEGF‐A treatment, but by a lesser extent (55% increase) with FN‐PAM‐VEGF (P < 0.05). While MSC pre‐treatment with VEGF‐A confirmed cell‐proliferation, pre‐treatment with FN‐PAM‐VEGF protected MSCs against H/R. In the early phase of treatments, VEGF‐A increased phospho‐Akt, phospho‐ERK‐1/2 and phospho‐PKCε compared to the untreated cells or FN‐PAM‐VEGF. Afterword, kinase phosphorylations were higher with VGEF, except for ERK‐1/2, which was similarly increased by both treatments at 3 days. Only FN‐PAM‐VEGF significantly increased Bcl‐2 levels. After H/R, lactate dehydrogenase release and cleaved Caspase‐3 levels were mainly reduced by FN‐PAM‐VEGF. While VEGF‐A enhances MSC proliferation in normoxia, FN‐PAM‐VEGF mainly hampers post‐hypoxic MSC death. These different effects underscore the necessity of approaches suited to the various conditions. The use of FN‐PAM‐VEGF could be considered as a novel approach for enhancing MSC survival and regeneration in hostile environment of post‐ischemic tissues.


PLOS ONE | 2014

Catestatin increases the expression of anti-apoptotic and pro-angiogenetic factors in the post-ischemic hypertrophied heart of SHR.

Claudia Penna; Teresa Pasqua; Daniela Amelio; Maria-Giulia Perrelli; Carmelina Angotti; Francesca Tullio; Sushil K. Mahata; Bruno Tota; Pasquale Pagliaro; Maria Carmela Cerra; Tommaso Angelone

Background In the presence of comorbidities the effectiveness of many cardioprotective strategies is blunted. The goal of this study was to assess in a hypertensive rat model if the early reperfusion with anti-hypertensive and pro-angiogenic Chromogranin A-derived peptide, Catestatin (CST:hCgA352–372; CST-Post), protects the heart via Reperfusion-Injury-Salvage-Kinases (RISK)-pathway activation, limiting infarct-size and apoptosis, and promoting angiogenetic factors (e.g., hypoxia inducible factor, HIF-1α, and endothelial nitric oxide synthase, eNOS, expression). Methods and Results The effects of CST-Post on infarct-size, apoptosis and pro-angiogenetic factors were studied in isolated hearts of spontaneously hypertensive rats (SHR), which underwent the following protocols: (a) 30-min ischemia and 120-min reperfusion (I/R); (b) 30-min ischemia and 20-min reperfusion (I/R-short), both with and without CST-Post (75 nM for 20-min at the beginning of reperfusion). In unprotected Wistar-Kyoto hearts, used as normal counterpart, infarct-size resulted smaller than in SHR. CST-Post reduced significantly infarct-size and improved post-ischemic cardiac function in both strains. After 20-min reperfusion, CST-Post induced S-nitrosylation of calcium channels and phosphorylation of RISK-pathway in WKY and SHR hearts. Yet specific inhibitors of the RISK pathway blocked the CST-Post protective effects against infarct in the 120-min reperfusion groups. Moreover, apoptosis (evaluated by TUNEL, ARC and cleaved caspase) was reduced by CST-Post. Importantly, CST-Post increased expression of pro-angiogenetic factors (i.e., HIF-1α and eNOS expression) after two-hour reperfusion. Conclusions CST-Post limits reperfusion damages and reverses the hypertension-induced increase of I/R susceptibility. Moreover, CST-Post triggers antiapoptotic and pro-angiogenetic factors suggesting that CST-Post can be used as an anti-maladaptive remodeling treatment.


Experimental Biology and Medicine | 2014

Protein S-nitrosylation in preconditioning and postconditioning:

Claudia Penna; Carmelina Angotti; Pasquale Pagliaro

The coronary artery disease is a leading cause of death and morbidity worldwide. This disease has a complex pathophysiology that includes multiple mechanisms. Among these is the oxidative/nitrosative stress. Paradoxically, oxidative/nitrosative signaling plays a major role in cardioprotection against ischemia/reperfusion injury. In this context, the gas transmitter nitric oxide may act through several mechanisms, such as guanylyl cyclase activation and via S-nitrosylation of proteins. The latter is a covalent modification of a protein cysteine thiol by a nitric oxide-group that generates an S-nitrosothiol. Here, we report data showing that nitric oxide and S-nitrosylation of proteins play a pivotal role not only in preconditioning but also in postconditioning cardioprotection.


Journal of Surgical Research | 2013

Acidic infusion in early reperfusion affects the activity of antioxidant enzymes in postischemic isolated rat heart.

Claudia Penna; Maria-Giulia Perrelli; Francesca Tullio; Carmelina Angotti; Pasquale Pagliaro

BACKGROUND Acidic perfusion (AP) performed at the onset of reperfusion (i.e., acid postconditioning) is cardioprotective. We investigated the effect of AP on postischemic cardiac function and on the activity of endogenous superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase. The role of exogenous CAT or SOD on AP cardioprotection was also investigated. Phosphorylation of redox-sensitive survival kinases (protein kinase C [PKC] ε and extracellular signal-regulated kinase [ERK] 1/2) was also checked. MATERIALS AND METHODS Isolated rat hearts underwent ischemia and reperfusion (I/R) for 30 and 120 min, respectively. AP was obtained by lowering [HCO3(-)] in the perfusion buffer. Infarct size and left ventricular pressure were measured. Protocols include I/R only, I/R plus acidic perfusion in early reperfusion (I/R + AP), and I/R plus AP and CAT (I/R + AP + CAT) or SOD (I/R + AP + SOD). I/R + SOD and I/R + CAT additional hearts served as controls. AP and/or antioxidants were given in the initial 3 min of reperfusion. Enzyme activities were studied in postischemic phase (seventh minute of reperfusion) in I/R or I/R + AP and Sham (buffer-perfused) hearts. RESULTS AP with (I/R + AP + CAT or I/R + AP + SOD) or without (I/R + AP) antioxidant enzymes resulted in a larger reduction of infarct size compared with I/R, I/R + SOD, or I/R + CAT. Compared with I/R, the postischemic systolic and diastolic recoveries of the cardiac function were markedly improved by the addition of AP and a lesser extent by AP + SOD or AP + CAT. AP increased the postischemic activity of CAT and lowered that of SOD and glutathione peroxidase compared with I/R only. Also, the phosphorylation and activity of ERK1/2 and PKCε were increased by AP. CONCLUSIONS Acid postconditioning affects the activity of endogenous antioxidant enzymes, activates ERK1/2-PKCε pathways, and protects against myocardial I/R injury. The combination of AP and exogenous SOD or CAT still provides cardioprotection. It is likely that intracellular (not extracellular) redox condition plays a pivotal role in acidic protection.


International Journal of Cardiology | 2017

Myocardial ischemia/reperfusion upregulates the transcription of the Neuregulin1 receptor ErbB3, but only postconditioning preserves protein translation: Role in oxidative stress

Michela Morano; Carmelina Angotti; Francesca Tullio; Giovanna Gambarotta; Claudia Penna; Pasquale Pagliaro; Stefano Geuna

BACKGROUND Neuregulin1 (Nrg1) and its receptors ErbB are crucial for heart development and for adult heart structural maintenance and function and Nrg1 has been proposed for heart failure treatment. Infarct size is the major determinant of heart failure and the mechanism of action and the role of each ErbB receptor remain obscure, especially in the post-ischemic myocardium. We hypothesized that Nrg1 and ErbB are affected at transcriptional level early after ischemia/reperfusion (I/R) injury, and that the protective postconditioning procedure (PostC, brief cycles of ischemia/reperfusion carried out after a sustained ischemia) can influence this pathway. METHODS AND RESULTS The Langendorffs heart was used as an ex-vivo model to mimic an I/R injury in the whole rat heart; after 30min of ischemia and 2h of reperfusion, with or without PostC, Nrg1 and ErbB expression were analysed by quantitative real-time PCR and Western blot. While no changes occur for ErbB2, ErbB4 and Nrg1, an increase of ErbB3 expression occurs after I/R injury, with and without PostC. However, I/R reduces ErbB3 protein, whereas PostC preserves it. An in vitro analysis with H9c2 cells exposed to redox-stress indicated that the transient over-expression of ErbB3 alone is able to increase cell survival (MTT assay), limiting mitochondrial dysfunction (JC-1 probe) and apoptotic signals (Bax/Bcl-2 ratio). CONCLUSIONS This study suggests ErbB3 as a protective factor against death pathways activated by redox stress and supports an involvement of this receptor in the pro-survival responses.


Basic Research in Cardiology | 2013

Diazoxide postconditioning induces mitochondrial protein S-Nitrosylation and a redox-sensitive mitochondrial phosphorylation/translocation of RISK elements:no role for SAFE

Claudia Penna; Maria-Giulia Perrelli; Francesca Tullio; Carmelina Angotti; Annalisa Camporeale; Valeria Poli; Pasquale Pagliaro


Basic Research in Cardiology | 2014

Overexpression of the muscle-specific protein, melusin, protects from cardiac ischemia/reperfusion injury.

Claudia Penna; Mara Brancaccio; Francesca Tullio; Cristina Rubinetto; Maria-Giulia Perrelli; Carmelina Angotti; Pasquale Pagliaro; Guido Tarone


International Journal of Pharmaceutics | 2017

Nanoprecipitated catestatin released from pharmacologically active microcarriers (PAMs) exerts pro-survival effects on MSC

Carmelina Angotti; Marie-Claire Venier-Julienne; Claudia Penna; S Femminò; L Sindji; Cédric Paniagua; Claudia N. Montero-Menei; Pasquale Pagliaro

Collaboration


Dive into the Carmelina Angotti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Tota

University of Calabria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge