Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmelo Del Valle is active.

Publication


Featured researches published by Carmelo Del Valle.


business process management | 2011

Supporting the Optimized Execution of Business Processes through Recommendations

Irene Barba; Barbara Weber; Carmelo Del Valle

In order to be able to flexibly adjust a company’s business processes (BPs) there is an increasing interest in flexible Process-Aware Information Systems (PAISs). This increasing flexibility, however, typically implies decreased user guidance by the PAIS and thus poses additional challenges to its users. This work proposes a recommendation system which assists users during process execution to optimize performance goals of the processes. The recommendation system is based on a constraint-based approach for planning and scheduling the BP activities and considers both the control-flow and the resource perspective.


data and knowledge engineering | 2013

User Recommendations for the Optimized Execution of Business Processes

Irene Barba; Barbara Weber; Carmelo Del Valle; Andrés Jiménez-Ramírez

Abstract In order to be able to flexibly adjust a companys business processes (BPs) there is an increasing interest in flexible process-aware information systems (PAISs). This increasing flexibility, however, typically implies decreased user guidance by the PAIS and thus poses significant challenges to its users. As a major contribution of this work, we propose a recommendation system which assists users during process execution to optimize performance goals of the processes. The recommendation system is based on a constraint-based approach for planning and scheduling the BP activities and considers both the control-flow and the resource perspective. To evaluate the proposed constraint-based approach different algorithms are applied to a range of test models of varying complexity. The results indicate that, although the optimization of process execution is a highly constrained problem, the proposed approach produces a satisfactory number of suitable solutions.


Information & Software Technology | 2015

Generating optimized configurable business process models in scenarios subject to uncertainty

Andrés Jiménez-Ramírez; Barbara Weber; Irene Barba; Carmelo Del Valle

Abstract Context The quality of business process models (i.e., software artifacts that capture the relations between the organizational units of a business) is essential for enhancing the management of business processes. However, such modeling is typically carried out manually. This is already challenging and time consuming when (1) input uncertainty exists, (2) activities are related, and (3) resource allocation has to be considered. When including optimization requirements regarding flexibility and robustness it becomes even more complicated potentially resulting into non-optimized models, errors, and lack of flexibility. Objective To facilitate the human work and to improve the resulting models in scenarios subject to uncertainty, we propose a software-supported approach for automatically creating configurable business process models from declarative specifications considering all the aforementioned requirements. Method First, the scenario is modeled through a declarative language which allows the analysts to specify its variability and uncertainty. Thereafter, a set of optimized enactment plans (each one representing a potential execution alternative) are generated from such a model considering the input uncertainty. Finally, to deal with this uncertainty during run-time, a flexible configurable business process model is created from these plans. Results To validate the proposed approach, we conduct a case study based on a real business which is subject to uncertainty. Results indicate that our approach improves the actual performance of the business and that the generated models support most of the uncertainty inherent to the business. Conclusions The proposed approach automatically selects the best part of the variability of a declarative specification. Unlike existing approaches, our approach considers input uncertainty, the optimization of multiple objective functions, as well as the resource and the control-flow perspectives. However, our approach also presents a few limitations: (1) it is focused on the control-flow and the data perspective is only partially addressed and (2) model attributes need to be estimated.


conference on advanced information systems engineering | 2013

Generating multi-objective optimized business process enactment plans

Andés Jiménez-Ramírez; Irene Barba; Carmelo Del Valle; Barbara Weber

Declarative business process (BP) models are increasingly used allowing their users to specify what has to be done instead of how. Due to their flexible nature, there are several enactment plans related to a specific declarative model, each one presenting specific values for different objective functions, e.g., completion time or profit. In this work, a method for generating optimized BP enactment plans from declarative specifications is proposed to optimize the performance of a process considering multiple objectives. The plans can be used for different purposes, e.g., providing recommendations. The proposed approach is validated through an empirical evaluation based on a real-world case study.


Proc. BPMDS '12 | 2012

Optimized Time Management for Declarative Workflows

Irene Barba; Andreas Lanz; Barbara Weber; Manfred Reichert; Carmelo Del Valle

Declarative process models are increasingly used since they fit better with the nature of flexible process-aware information systems and the requirements of the stakeholders involved. When managing business processes, in addition, support for representing time and reasoning about it becomes crucial. Given a declarative process model, users may choose among different ways to execute it, i.e., there exist numerous possible enactment plans, each one presenting specific values for the given objective functions (e.g., overall completion time). This paper suggests a method for generating optimized enactment plans (e.g., plans minimizing overall completion time) from declarative process models with explicit temporal constraints. The latter covers a number of well-known workflow time patterns. The generated plans can be used for different purposes like providing personal schedules to users, facilitating early detection of critical situations, or predicting execution times for process activities. The proposed approach is applied to a range of test models of varying complexity. Although the optimization of process execution is a highly constrained problem, results indicate that our approach produces a satisfactory number of suitable solutions, i.e., solutions optimal in many cases.


International Journal of Cooperative Information Systems | 2013

Automatic Generation of Optimized Business Process Models from Constraint-Based Specifications

Irene Barba; Carmelo Del Valle; Barbara Weber; Andrés Jiménez

Business process (BP) models are usually defined manually by business analysts through imperative languages considering activity properties, constraints imposed on the relations between the activities as well as different performance objectives. Furthermore, allocating resources is an additional challenge since scheduling may significantly impact BP performance. Therefore, the manual specification of BP models can be very complex and time-consuming, potentially leading to non-optimized models or even errors. To overcome these problems, this work proposes the automatic generation of imperative optimized BP models from declarative specifications. The static part of these declarative specifications (i.e. control-flow and resource constraints) is expected to be useful on a long-term basis. This static part is complemented with information that is less stable and which is potentially unknown until starting the BP execution, i.e. estimates related to (1) number of process instances which are being executed with...


data and knowledge engineering | 2009

Developing a labelled object-relational constraint database architecture for the projection operator

María Teresa Gómez-López; R. Ceballos; Rafael M. Gasca; Carmelo Del Valle

Current relational databases have been developed in order to improve the handling of stored data, however, there are some types of information that have to be analysed for which no suitable tools are available. These new types of data can be represented and treated as constraints, allowing a set of data to be represented through equations, inequations and Boolean combinations of both. To this end, constraint databases were defined and some prototypes were developed. Since there are aspects that can be improved, we propose a new architecture called labelled object-relational constraint database (LORCDB). This provides more expressiveness, since the database is adapted in order to support more types of data, instead of the data having to be adapted to the database. In this paper, the projection operator of SQL is extended so that it works with linear and polynomial constraints and variables of constraints. In order to optimize query evaluation efficiency, some strategies and algorithms have been used to obtain an efficient query plan. Most work on constraint databases uses spatiotemporal data as case studies. However, this paper proposes model-based diagnosis since it is a highly potential research area, and model-based diagnosis permits more complicated queries than spatiotemporal examples. Our architecture permits the queries over constraints to be defined over different sets of variables by using symbolic substitution and elimination of variables.


international work conference on artificial and natural neural networks | 2009

A Genetic Algorithm for Assembly Sequence Planning

Carmelo Del Valle; Rafael M. Gasca; Miguel Toro; Eduardo F. Camacho

This work presents a genetic algorithm for assembly sequence planning. This problem is more difficult than other sequencing problems that have already been tackled with success using these techniques, such as the classic Traveling Salesperson Problem (TSP) or the Job Shop Scheduling Problem (JSSP). It not only involves the arranging of tasks, as in those problems, but also the selection of them from a set of alternative operations. Two families of genetic operators have been used for searching the whole solution space. The first includes operators that search for new sequences locally in a predetermined assembly plan, that of parent chromosomes. The other family of operators introduces new tasks in the solution, replacing others to maintain the validity of chromosomes, and it is intended to search for sequences in other assembly plans. Furthermore, some problem-based heuristics have been used for generating the individuals in the population.


Current Topics in Artificial Intelligence | 2007

NMUS: Structural Analysis for Improving the Derivation of All MUSes in Overconstrained Numeric CSPs

Rafael M. Gasca; Carmelo Del Valle; María Teresa Gómez-López; R. Ceballos

Models are used in science and engineering for experimentation, analysis, model-based diagnosis, design and planning/sheduling applications. Many of these models are overconstrained Numeric Constraint Satisfaction Problems (NCSP), where the numeric constraints could have linear or polynomial relations. In practical scenarios, it is very useful to know which parts of the overconstrained NCSP instances cause the unsolvability. Although there are algorithms to find all optimal solutions for this problem, they are computationally expensive, and hence may not be applicable to large and real-world problems. Our objective is to improve the performance of these algorithms for numeric domains using structural analysis. We provide experimental results showing that the use of the different strategies proposed leads to a substantially improved performance and it facilitates the application of solving larger and more realistic problems.


Proc. ISD '12 | 2013

OptBPPlanner: Automatic Generation of Optimized Business Process Enactment Plans

Andrés Jiménez; Irene Barba; Carmelo Del Valle; Barbara Weber

Unlike imperative models, the specification of business process (BP) properties in a declarative way allows the user to specify what has to be done instead of having to specify how it has to be done, thereby facilitating the human work involved, avoiding failures, and obtaining a better optimization. Frequently, there are several enactment plans related to a specific declarative model, each one presenting specific values for different objective functions, e.g., overall completion time. As a major contribution of this work, we propose a method for the automatic generation of optimized BP enactment plans from declarative specifications. The proposed method is based on a constraint-based approach for planning and scheduling the BP activities. These optimized plans can then be used for different purposes like simulation, time prediction, recommendations, and generation of optimized BP models. Moreover, a tool-supported method, called OptBPPlanner, has been implemented to demonstrate the feasibility of our approach. Furthermore, the proposed method is validated through a range of test models of varying complexity.

Collaboration


Dive into the Carmelo Del Valle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Weber

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge