Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmen Abate is active.

Publication


Featured researches published by Carmen Abate.


Naunyn-schmiedebergs Archives of Pharmacology | 2004

Antiproliferative and cytotoxic effects of some σ2 agonists and σ1 antagonists in tumour cell lines

Nicola Antonio Colabufo; Francesco Berardi; Marialessandra Contino; Mauro Niso; Carmen Abate; Roberto Perrone; Vincenzo Tortorella

To establish the activity of σ ligands at σ1 and σ2 receptor, we chose two tumour cell lines, the human SK-N-SH neuroblastoma and the rat C6 glioma lines, which express σ2 receptors at a high density and σ1 receptors in their high-affinity or low-affinity state. We tested the σ2 receptor agonist PB28 and the σ2 antagonist AC927, and (+)-pentazocine and NE100 as agonist and antagonist, respectively, at σ1 receptors, with regard to antiproliferative and cytotoxic effects. In addition, 1,3-di(2-tolyl)guanidine (DTG) and haloperidol were tested as reference compounds displaying nearly equipotent σ affinity (σ2>σ1 and σ1>σ2, respectively). In both SK-N-SH and C6 cells, PB28 and NE100 displayed the most potent results both in antiproliferative and cytotoxic assay while AC927 and (+)-pentazocine were inactive in both assays. The cytotoxic and antiproliferative effects of DTG and haloperidol reflected their σ1 antagonist activity and σ2 agonist activity. Moreover, our results in the tumour cell lines correlated well with those for σ2 activity found previously in a functional assay in the guinea-pig bladder. These findings establish a new model for evaluating both σ2 and σ1 receptor activity of σ ligands, which could be useful for developing new ligands having mixed σ2 agonist/σ1 antagonist activity as potential antineoplastic agents.


European Journal of Pharmacology | 2015

Elements in support of the ‘non-identity’ of the PGRMC1 protein with the σ2 receptor

Carmen Abate; Mauro Niso; Vittoria Infantino; Alessio Menga; Francesco Berardi

σ2 Receptor subtype is overexpressed in a variety of human tumors, with σ2 agonists showing antiproliferative effects towards tumor cells through multiple pathways that depend both on the tumor cell type and on the molecule type. Therefore, σ2 receptor is an intriguing target for tumor diagnosis and treatment despite the fact that that it has not yet been cloned. One of the last attempts to characterize σ2 receptors led to identify it as the progesterone receptor membrane component 1 (PGRMC1). Although still controversial, such identity appears to have been accepted. We the aim of contributing to solve this controversy, in this work we stably silenced or overexpressed PGRMC1 protein in human MCF7 adenocarcinoma cells. Western blotting analyses were performed to quantify the presence of PGRMC1 protein on each of the three MCF7 cell lines variants, while scatchard analyses with radioligand were performed in order to determine the expression of the σ2 receptors. In order to correlate the antiproliferative effect of σ2 receptor agonist with PGRMC1 density, some σ2 ligands were administered to each of the three MCF7 cells variants. The results suggested that PGRMC1 and σ2 receptors are two different molecular entities.


Journal of Experimental & Clinical Cancer Research | 2012

Lysosomal membrane permeabilization is an early event in sigma-2 receptor ligand mediated cell death in pancreatic cancer

John R. Hornick; Suwanna Vangveravong; Dirk Spitzer; Carmen Abate; Francesco Berardi; Peter S. Goedegebuure; Robert H. Mach; William G. Hawkins

BackgroundSigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer.ResultsFluorescently labeled sigma-2 receptor ligands of two classes (derivatives of SW43 and PB282) localize to cell membrane components in Bxpc3 and Aspc1 pancreatic cancer cells and accumulate in lysosomes. We found that interactions in the lysosome are critical for cell death following sigma-2 ligand treatment because selective inhibition of a protective lysosomal membrane glycoprotein, LAMP1, with shRNA greatly reduced the viability of cells following treatment. Sigma-2 ligands induced lysosomal membrane permeabilization (LMP) and protease translocation triggering downstream effectors of apoptosis. Subsequently, cellular oxidative stress was greatly increased following treatment with SW43, and the hydrophilic antioxidant N-acetylcysteine (NAC) gave greater protection against this than a lipophilic antioxidant, α-tocopherol (α-toco). Conversely, PB282-mediated cytotoxicity relied less on cellular oxidation, even though α-toco did provide protection from this ligand. In addition, we found that caspase-3 induction was not as significantly inhibited by cathepsin inhibitors as by antioxidants. Both NAC and α-toco protected against caspase-3 induction following PB282 treatment, while only NAC offered protection following SW43 treatment. The caspase-3 inhibitor DEVD-FMK offered significant protection from PB282, but not SW43.ConclusionsSigma-2 ligand SW43 commits pancreatic cancer cells to death by a caspase-independent process involving LMP and oxidative stress which is protected from by NAC. PB282 however undergoes a caspase-dependent death following LMP protected by DEVD-FMK and α-toco, which is also known to stabilize the mitochondrial membrane during apoptotic stimuli. These differences in mechanism are likely dependent on the structural class of the compounds versus the inherent sigma-2 binding affinity. As resistance of pancreatic cancers to specific apoptotic stimuli from chemotherapy is better appreciated, and patient-tailored treatments become more available, ligands with high sigma-2 receptor affinity should be chosen based on sensitivities to apoptotic pathways.


Journal of Medicinal Chemistry | 2008

Novel 4-(4-Aryl)cyclohexyl-1-(2-pyridyl)piperazines as Δ8-Δ7 Sterol Isomerase (Emopamil Binding Protein) Selective Ligands with Antiproliferative Activity

Francesco Berardi; Carmen Abate; Savina Ferorelli; Anna F. de Robertis; Marcello Leopoldo; Nicola Antonio Colabufo; Mauro Niso; Roberto Perrone

To find Delta(8)-Delta(7) sterol isomerase (EBP) selective ligands, various arylpiperazines previously studied and structurally related to some sigma receptors ligands were preliminarily screened. Consequently, a novel series of 2- or 2,6-disubstituted (CH(3), CH(3)O, Cl, F) cis- and trans-4-(4-aryl)cyclohexyl-1-(2-pyridyl)piperazines was developed. Radioreceptor binding assays evidenced cis-19, cis-30 and cis-33 as new ligands with nanomolar affinity toward EBP site and a good selectivity relative to EBP-related sigma receptors. The most selective 2,6-dimethoxy derivative (cis-33) demonstrated the highest potency (EC(50) = 12.9 microM) and efficacy (70%) in inhibiting proliferation of human prostate cancer PC-3 cell line. Among the reference compounds, sigma(2) agonist 36 (PB28) reached the maximum efficacy (100%), suggesting the contribution of the sigma(2) receptor to the antiproliferative activity. This novel class of EBP inhibitors represents a valuable tool for investigating the last steps of cholesterol biosynthesis and related pathologies, as well as a starting point for developing new anticancer drugs.


European Journal of Medicinal Chemistry | 2013

Development of 3,4-dihydroisoquinolin-1(2H)-one derivatives for the Positron Emission Tomography (PET) imaging of σ2 receptors

Carmen Abate; Svetlana V. Selivanova; Adrienne Müller; Stefanie D. Krämer; Roger Schibli; Roberta Marottoli; Roberto Perrone; Francesco Berardi; Mauro Niso; Simon M. Ametamey

σ₂ Receptors are promising biomarkers for cancer diagnosis given the relationship between the proliferative status of tumors and their density. With the aim of contributing to the research of σ₂ receptor Positron Emission Tomography (PET) probes, we developed 2-[3-[6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl]propyl]-3,4-dihydroisoquinolin-1(2H)-one (3), with optimal σ₂ pharmacological properties and appropriate lipophilicity. Hence, 3 served as the lead compound for the development of a series of dihydroisoquinolinones amenable to radiolabeling. Radiosynthesis for compound 26, which displayed the most appropriate σ₂ profile, was developed and σ₂ specific binding for the corresponding [(18)F]-26 was confirmed by in vitro autoradiography on rat brain slices. Despite the excellent in vitro properties, [(18)F]-26 could not successfully image σ₂ receptors in the rat brain in vivo, maybe because of its interaction with P-gp. Nevertheless, [(18)F]-26 may still be worthy of further investigation for the imaging of σ₂ receptors in peripheral tumors devoid of P-gp overexpression.


Pharmacological Research | 2017

Sigma-2 receptor and progesterone receptor membrane component 1 (PGRMC1) are two different proteins: Proofs by fluorescent labeling and binding of sigma-2 receptor ligands to PGRMC1

Maria Laura Pati; Diana Groza; Chiara Riganti; Joanna Kopecka; Mauro Niso; Francesco Berardi; Sonja Hager; Petra Heffeter; Miwa Hirai; Hitoshi Tsugawa; Yasuaki Kabe; Makoto Suematsu; Carmen Abate

Graphical abstract Figure. No Caption available. Abstract A controversial relationship between sigma‐2 and progesterone receptor membrane component 1 (PGRMC1) proteins, both representing promising targets for the therapy and diagnosis of tumors, exists since 2011, when the sigma‐2 receptor was reported to be identical to PGRMC1. Because a misidentification of these proteins will lead to biased future research hampering the possible diagnostic and therapeutic exploitation of the two targets, there is the need to solve the debate on their identity. With this aim, we have herein investigated uptake and distribution of structurally different fluorescent sigma‐2 receptor ligands by flow cytometry and confocal microscopy in MCF7 cells, where together with intrinsic sigma‐2 receptors, PGRMC1 was constitutively present or alternatively silenced or overexpressed. HCT116 cells, with constitutive or silenced PGRMC1, were also studied. These experiments showed that the fluorescent sigma‐2 ligands bind to their receptor irrespective of PGRMC1 expression. Furthermore, isothermal titration calorimetry was conducted to examine if DTG and PB28, two structurally distinct nanomolar affinity sigma‐2 ligands, bind to purified PGRMC1 proteins that have recently been revealed to form both apo‐monomeric and heme‐mediated dimeric forms. While no binding to apo‐PGRMC1 monomer was detected, a micromolar affinity to heme‐mediated dimerized PGRMC1 was demonstrated in DTG but not in PB28. The current data provide evidence that sigma‐2 receptor and PGRMC1 are not identical, paving the pathway for future unbiased research in which these two attractive targets are treated as different proteins while the identification of the true sigma‐2 protein further needs to be pursued.


European Journal of Pharmacology | 2012

The sigma-1 receptor antagonist PB212 reduces the Ca2+-release through the inositol (1, 4, 5)-trisphosphate receptor in SK-N-SH cells

Giuseppe Gasparre; Carmen Abate; Francesco Berardi; Giuseppe Cassano

Sigma-1 receptors are specifically located at the endoplasmic reticulum-mitochondrion interface, but upon stimulation by ligands or under prolonged cellular stress, they translocate to other areas of the cell. Sigma-1 receptors are involved in the regulation of intracellular [Ca(2+)] by affecting the Ca(2+)-influx or the release from intracellular stores. In SK-N-SH cells, we measured the affinity of 4-methyl-1-[4-(6-methoxynaphthalen-1-yl)butyl]piperidine (PB212) at sigma-1 receptor by using a competition binding assay with specific radioligand; we obtained a K(i) value=316 ± 19 nM. PB212 also showed an antiproliferative effect in SK-N-SH cells (EC(50)=32 ± 4 μM) but had no effect in MCF7 cells, which only express sigma-2 receptor; these findings suggest that PB212 behaves as a sigma-1 receptor antagonist. We have studied the effect of PB212 on Ca(2+) homeostasis of the SK-N-SH cell line with the fluorescent probe Fura-2. 100 μM PB212 induced a Ca(2+)-efflux from the endoplasmic reticulum through the inositol (1, 4, 5)-trisphosphate (IP(3)) receptor. Moreover, [PB212] ranging from 1 to 100μM reduced the Ca(2+)-response, triggered by carbachol or bradykinin that engage the phospholipase C/IP(3) pathway; such a response is generally increased by sigma-1 receptor agonists. On the other hand, PB212 did not reduce the Ca(2+)-response mediated by IP(3) in LoVo cells, which do not express neither sigma-1 nor sigma-2 receptors, and in MCF7 cells. The fact that the activity of the sigma-1 receptor can be experimentally modulated by agonists and antagonists supports the intriguing hypothesis that some endogenous molecules, unknown at the moment, modulate the sigma-1 receptor and its cellular targets.


Nuclear Medicine and Biology | 2015

Synthesis and pharmacological evaluation of 11C-labeled piperazine derivative as a PET probe for sigma-2 receptor imaging

Svetlana V. Selivanova; Annamaria Toscano; Carmen Abate; Francesco Berardi; Adrienne Müller; Stefanie D. Krämer; Roger Schibli; Simon M. Ametamey

INTRODUCTION Both subtypes of sigma (σ) receptors, σ₁ and σ₂, are over-expressed in many cancers with σ₂ proposed as a biomarker of tumor proliferation. We are interested in developing a high affinity selective σ₂ radioligand for in vivo monitoring of proliferative status of solid tumors and response to anti-cancer therapies. 1-Cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28) represents one of the lead candidates in the development of σ receptor ligands for therapeutic and diagnostic applications. However, the utility of PB28 is limited due to its relatively high lipophilicity. METHODS A more hydrophilic analogue (-)-(S)-1 was radiolabeled with (11)C via standard O-alkylation. In vitro autoradiography with [(11)C](-)-(S)-1 was done using rat brain slices. PET imaging was performed in mice bearing EMT6, C6 or PC-3 tumors after i.v. injection of [(11)C](-)-(S)-1. RESULTS [(11)C](-)-(S)-1 was produced in 53%±7% isolated decay-corrected yield with radiochemical and chemical purity over 99% and specific activity greater than 100 GBq/μmol. In vitro autoradiography with [(11)C(-)-(S)-1 resulted in a heterogeneous binding of the tracer in the rat brain with the highest radioactivity signals in the cortex region followed by cerebellum. This binding was successfully blocked by 10 μM of either haloperidol, (+)-(R)-1 or PB28. For C6 xenografts low target-to-nontarget ratio and high non-specific binding did not allow clear tumor visualization. No accumulation was visible in EMT6 tumor or in PC-3 tumor. Rat and mouse brain uptake was low and homogeneous while stronger signal was detected in the spinal cord. High accumulation of radioactivity was observed in liver and intestine suggesting hepatobiliary clearance. CONCLUSIONS Despite excellent in vitro properties, [(11)C](-)-(S)-1 did not provide high enough specific binding in vivo and is, therefore, not a useful PET tracer for imaging σ₂ expression in tumors.


Journal of Medicinal Chemistry | 2004

4-(Tetralin-1-yl)- and 4-(Naphthalen-1-yl)alkyl Derivatives of 1-Cyclohexylpiperazine as σ Receptor Ligands with Agonist σ2 Activity

Francesco Berardi; Savina Ferorelli; Carmen Abate; Nicola Antonio Colabufo; Marialessandra Contino; and Roberto Perrone; Vincenzo Tortorella


Journal of Medicinal Chemistry | 2006

Is the sigma2 receptor a histone binding protein

Nicola Antonio Colabufo; Francesco Berardi; Carmen Abate; Marialessandra Contino; Mauro Niso; Roberto Perrone

Collaboration


Dive into the Carmen Abate's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge