Carmen Birchmeier
Max Delbrück Center for Molecular Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carmen Birchmeier.
Nature Reviews Molecular Cell Biology | 2003
Carmen Birchmeier; Walter Birchmeier; Ermanno Gherardi; George F. Vande Woude
Hepatocyte growth factor/scatter factor and its receptor, the tyrosine kinase Met, arose late in evolution and are unique to vertebrates. In spite of this, Met uses molecules such as Gab1 — homologues of which are present in Caenorhabditis elegans and Drosophila melanogaster — for downstream signalling. Pivotal roles for Met in development and cancer have been established: Met controls cell migration and growth in embryogenesis; it also controls growth, invasion and metastasis in cancer cells; and activating Met mutations predispose to human cancer.
Nature Reviews Cancer | 2012
Ermanno Gherardi; Walter Birchmeier; Carmen Birchmeier; George F. Vande Woude
Uncontrolled cell survival, growth, angiogenesis and metastasis are essential hallmarks of cancer. Genetic and biochemical data have demonstrated that the growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, the tyrosine kinase MET, have a causal role in all of these processes, thus providing a strong rationale for targeting these molecules in cancer. Parallel progress in understanding the structure and function of HGF/SF, MET and associated signalling components has led to the successful development of blocking antibodies and a large number of small-molecule MET kinase inhibitors. In this Review, we discuss these advances, as well as results from recent clinical studies that demonstrate that inhibiting MET signalling in several types of solid human tumours has major therapeutic value.
Nature Cell Biology | 1999
Alexey Kotlyarov; Armin Neininger; Carola Schubert; Rolf Eckert; Carmen Birchmeier; Hans-Dieter Volk; Matthias Gaestel
MAPKAP kinase 2 (MK2) is one of several kinases that are regulated through direct phosphorylation by p38 MAP kinase. By introducing a targeted mutation into the mouse MK2 gene, we have determined the physiological function of MK2 in vivo. Mice that lack MK2 show increased stress resistance and survive LPS-induced endotoxic shock. This is due to a reduction of ∼90 % in the production of tumor necrosis factor-α (TNF-α) and not to a change in signalling from the TNF receptor. The level and stability of TNF-α mRNA is not reduced and TNF-α secretion is not affected. We conclude that MK2 is an essential component in the inflammatory response which regulates biosynthesis of TNF-α at a post-transcriptional level.
Nature | 1997
Dieter Riethmacher; Eva Sonnenberg-Riethmacher; Volker Brinkmann; Tomoichiro Yamaai; Gary R. Lewin; Carmen Birchmeier
Neuregulins and their specific receptors, members of the ErbB family of tyrosine kinases, have been implicated in the control of growth and development of Schwann cells, specialized cells that wrap around nerve axons to provide electrical insulation. Here we use gene targeting to generate mice that lack ErbB3, a high-affinity neuregulin receptor. Homozygous erbB3 mutant embryos lack Schwann-cell precursors and Schwann cells that accompany peripheral axons of sensory and motor neurons. The initial development of motor neurons and sensory neurons of dorsal root ganglia occurs as it should, but at later stages most motor neurons (79%) and sensory neurons in dorsal root ganglia (82%) undergo cell death in erbB3 mutant embryos. Degeneration of the peripheral nervous system in erbB3 mutant pups is thus much more severe than the cell death in mice that lack neurotrophins or neurotrophin receptors,. We also show that ErbB3 functions in a cell-autonomous way during the development of Schwann cells, but not in the survival of sensory or motor neurons. Our results indicate that sensory and motor neurons require factors for their survival that are provided by developing Schwann cells.
Trends in Cell Biology | 1998
Carmen Birchmeier; Ermanno Gherardi
A number of developmental processes that involve cell migration, growth or morphogenesis depend on extracellular signals. A molecule that provides such signals, known as hepatocyte growth factor/scatter factor (HGF/SF), has attracted considerable interest in recent years because of its distinct structure, mechanism of activation and important roles throughout embryogenesis. This review discusses the main features of HGF/SF and its receptor, the product of the c-met protooncogene, and their role in embryogenesis.
Cell | 2012
Maria Ciofani; Aviv Madar; Carolina Galan; MacLean Sellars; Kieran Mace; Florencia Pauli; Ashish Agarwal; Wendy Huang; Christopher N. Parkurst; Michael Muratet; Kim M. Newberry; Sarah Meadows; Alex Greenfield; Yi Yang; Preti Jain; Francis Kirigin; Carmen Birchmeier; Erwin F. Wagner; Kenneth M. Murphy; Richard M. Myers; Richard Bonneau; Dan R. Littman
Th17 cells have critical roles in mucosal defense and are major contributors to inflammatory disease. Their differentiation requires the nuclear hormone receptor RORγt working with multiple other essential transcription factors (TFs). We have used an iterative systems approach, combining genome-wide TF occupancy, expression profiling of TF mutants, and expression time series to delineate the Th17 global transcriptional regulatory network. We find that cooperatively bound BATF and IRF4 contribute to initial chromatin accessibility and, with STAT3, initiate a transcriptional program that is then globally tuned by the lineage-specifying TF RORγt, which plays a focal deterministic role at key loci. Integration of multiple data sets allowed inference of an accurate predictive model that we computationally and experimentally validated, identifying multiple new Th17 regulators, including Fosl2, a key determinant of cellular plasticity. This interconnected network can be used to investigate new therapeutic approaches to manipulate Th17 functions in the setting of inflammatory disease.
Developmental Biology | 2003
Dietmar Zechner; Yasuyuki Fujita; Jörg Hülsken; Thomas Müller; Ingrid Walther; Makoto M. Taketo; E. Bryan Crenshaw; Walter Birchmeier; Carmen Birchmeier
beta-Catenin is an essential component of the canonical Wnt signaling system that controls decisive steps in development. We employed here two conditional beta-catenin mutant alleles to alter beta-catenin signaling in the central nervous system of mice: one allele to ablate beta-catenin and the second allele to express a constitutively active beta-catenin. The tissue mass of the spinal cord and brain is reduced after ablation of beta-catenin, and the neuronal precursor population is not maintained. In contrast, the spinal cord and brain of mice that express activated beta-catenin is much enlarged in mass, and the neuronal precursor population is increased in size. beta-Catenin signals are thus essential for the maintenance of proliferation of neuronal progenitors, controlling the size of the progenitor pool, and impinging on the decision of neuronal progenitors to proliferate or to differentiate.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Cemil Özcelik; Bettina Erdmann; Bernhard Pilz; Nina Wettschureck; Stefan Britsch; Norbert Hubner; Kenneth R. Chien; Carmen Birchmeier; Alistair N. Garratt
The ErbB2 (Her2) proto-oncogene encodes a receptor tyrosine kinase, which is frequently amplified and overexpressed in human tumors. ErbB2 provides the target for a novel and effective antibody-based therapy (Trastuzumab/Herceptin) used for the treatment of mammary carcinomas. However, cardiomyopathies develop in a proportion of patients treated with Trastuzumab, and the incidence of such complications is increased by combination with standard chemotherapy. Gene ablation studies have previously demonstrated that the ErbB2 receptor, together with its coreceptor ErbB4 and the ligand Neuregulin-1, are essential for normal development of the heart ventricle. We use here Cre-loxP technology to mutate ErbB2 specifically in ventricular cardiomyocytes. Conditional mutant mice develop a severe dilated cardiomyopathy, with signs of cardiac dysfunction generally appearing by the second postnatal month. We infer that signaling from the ErbB2 receptor, which is enriched in T-tubules in cardiomyocytes, is crucial for adult heart function. Conditional ErbB2 mutant mice provide a model of dilated cardiomyopathy. In particular, they will allow a rigorous assessment of the role of ErbB2 in the heart and provide insight into the molecular mechanisms that underlie the adverse effects of anti-ErbB2 antibodies.
Neuron | 2001
Xia Yang; Silvia Arber; Christopher William; Li Li; Yasuto Tanabe; Thomas M. Jessell; Carmen Birchmeier; Steven J. Burden
The patterning of skeletal muscle is thought to depend upon signals provided by motor neurons. We show that AChR gene expression and AChR clusters are concentrated in the central region of embryonic skeletal muscle in the absence of innervation. Neurally derived Agrin is dispensable for this early phase of AChR expression, but MuSK, a receptor tyrosine kinase activated by Agrin, is required to establish this AChR prepattern. The zone of AChR expression in muscle lacking motor axons is wider than normal, indicating that neural signals refine this muscle-autonomous prepattern. Neuronal Neuregulin-1, however, is not involved in this refinement process, nor indeed in synapse-specific AChR gene expression. Our results demonstrate that AChR expression is patterned in the absence of innervation, raising the possibility that similarly prepatterned muscle-derived cues restrict axon growth and initiate synapse formation.
Neuron | 1996
Allen Ebens; Katja Brose; E.David Leonardo; M.Gartz Hanson; Friedhelm Bladt; Carmen Birchmeier; Barbara A. Barres; Marc Tessier-Lavigne
In the embryonic nervous system, developing axons can be guided to their targets by diffusible factors secreted by their intermediate and final cellular targets. To date only one family of chemoattractants for developing axons has been identified. Grafting and ablation experiments in fish, amphibians, and birds have suggested that spinal motor axons are guided to their targets in the limb in part by a succession of chemoattractants made by the sclerotome and by the limb mesenchyme, two intermediate targets that these axons encounter en route to their target muscles. Here we identify the limb mesenchyme-derived chemoattractant as hepatocyte growth factor/scatter factor (HGF/SF), a diffusible ligand for the c-Met receptor tyrosine kinase, and we also implicate HGF/SF at later stages as a muscle-derived survival factor for motoneurons. These results indicate that, in addition to functioning as a mitogen, a motogen, and a morphogen in nonneural systems, HGF/SF can function as a guidance and survival factor in the developing nervous system.