Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmen C. Brewer is active.

Publication


Featured researches published by Carmen C. Brewer.


Blood | 2009

Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen

Laura A. Johnson; Richard A. Morgan; Mark E. Dudley; Lydie Cassard; James Chih-Hsin Yang; Marybeth S. Hughes; Udai S. Kammula; Richard E. Royal; Richard M. Sherry; John R. Wunderlich; Chyi Chia R Lee; Nicholas P. Restifo; Susan L. Schwarz; Alexandria P. Cogdill; Rachel J. Bishop; Hung Kim; Carmen C. Brewer; Susan F. Rudy; Carter VanWaes; Jeremy L. Davis; Aarti Mathur; Robert T. Ripley; Debbie Ann N Nathan; Carolyn M. Laurencot; Steven A. Rosenberg

Gene therapy of human cancer using genetically engineered lymphocytes is dependent on the identification of highly reactive T-cell receptors (TCRs) with antitumor activity. We immunized transgenic mice and also conducted high-throughput screening of human lymphocytes to generate TCRs highly reactive to melanoma/melanocyte antigens. Genes encoding these TCRs were engineered into retroviral vectors and used to transduce autologous peripheral lymphocytes administered to 36 patients with metastatic melanoma. Transduced patient lymphocytes were CD45RA(-) and CD45RO(+) after ex vivo expansion. After infusion, the persisting cells displayed a CD45RA(+) and CD45RO(-) phenotype. Gene-engineered cells persisted at high levels in the blood of all patients 1 month after treatment, responding patients with higher ex vivo antitumor reactivity than nonresponders. Objective cancer regressions were seen in 30% and 19% of patients who received the human or mouse TCR, respectively. However, patients exhibited destruction of normal melanocytes in the skin, eye, and ear, and sometimes required local steroid administration to treat uveitis and hearing loss. Thus, T cells expressing highly reactive TCRs mediate cancer regression in humans and target rare cognate-antigen-containing cells throughout the body, a finding with important implications for the gene therapy of cancer. This trial was registered at www.ClinicalTrials.gov as NCI-07-C-0174 and NCI-07-C-0175.


The New England Journal of Medicine | 2008

Phenotype and course of Hutchinson-Gilford progeria syndrome

Melissa Merideth; Leslie B. Gordon; Sarah Clauss; Vandana Sachdev; Ann C.M. Smith; Monique B. Perry; Carmen C. Brewer; Christopher Zalewski; H. Jeffrey Kim; Beth Solomon; Brian P. Brooks; Lynn H. Gerber; Maria L. Turner; Demetrio L. Domingo; Thomas C. Hart; Jennifer Graf; James C. Reynolds; Andrea Gropman; Jack A. Yanovski; Marie Gerhard-Herman; Francis S. Collins; Elizabeth G. Nabel; Richard O. Cannon; William A. Gahl; Wendy J. Introne

BACKGROUND Hutchinson-Gilford progeria syndrome is a rare, sporadic, autosomal dominant syndrome that involves premature aging, generally leading to death at approximately 13 years of age due to myocardial infarction or stroke. The genetic basis of most cases of this syndrome is a change from glycine GGC to glycine GGT in codon 608 of the lamin A (LMNA) gene, which activates a cryptic splice donor site to produce abnormal lamin A; this disrupts the nuclear membrane and alters transcription. METHODS We enrolled 15 children between 1 and 17 years of age, representing nearly half of the worlds known patients with Hutchinson-Gilford progeria syndrome, in a comprehensive clinical protocol between February 2005 and May 2006. RESULTS Clinical investigations confirmed sclerotic skin, joint contractures, bone abnormalities, alopecia, and growth impairment in all 15 patients; cardiovascular and central nervous system sequelae were also documented. Previously unrecognized findings included prolonged prothrombin times, elevated platelet counts and serum phosphorus levels, measured reductions in joint range of motion, low-frequency conductive hearing loss, and functional oral deficits. Growth impairment was not related to inadequate nutrition, insulin unresponsiveness, or growth hormone deficiency. Growth hormone treatment in a few patients increased height growth by 10% and weight growth by 50%. Cardiovascular studies revealed diminishing vascular function with age, including elevated blood pressure, reduced vascular compliance, decreased ankle-brachial indexes, and adventitial thickening. CONCLUSIONS Establishing the detailed phenotype of Hutchinson-Gilford progeria syndrome is important because advances in understanding this syndrome may offer insight into normal aging. Abnormal lamin A (progerin) appears to accumulate with aging in normal cells. (ClinicalTrials.gov number, NCT00094393.)


Blood | 2014

GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity.

Michael A. Spinner; Lauren A. Sanchez; Amy P. Hsu; Pamela A. Shaw; Christa S. Zerbe; Katherine R. Calvo; Diane C. Arthur; Wenjuan Gu; Christine M. Gould; Carmen C. Brewer; Edward W. Cowen; Alexandra F. Freeman; Kenneth N. Olivier; Gulbu Uzel; Adrian M. Zelazny; Janine Daub; Christine Spalding; Reginald J. Claypool; Neelam Giri; Blanche P. Alter; Emily M. Mace; Jordan S. Orange; Jennifer Cuellar-Rodriguez; Dennis D. Hickstein; Steven M. Holland

Haploinsufficiency of the hematopoietic transcription factor GATA2 underlies monocytopenia and mycobacterial infections; dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency; familial myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML); and Emberger syndrome (primary lymphedema with MDS). A comprehensive examination of the clinical features of GATA2 deficiency is currently lacking. We reviewed the medical records of 57 patients with GATA2 deficiency evaluated at the National Institutes of Health from January 1, 1992, to March 1, 2013, and categorized mutations as missense, null, or regulatory to identify genotype-phenotype associations. We identified a broad spectrum of disease: hematologic (MDS 84%, AML 14%, chronic myelomonocytic leukemia 8%), infectious (severe viral 70%, disseminated mycobacterial 53%, and invasive fungal infections 16%), pulmonary (diffusion 79% and ventilatory defects 63%, pulmonary alveolar proteinosis 18%, pulmonary arterial hypertension 9%), dermatologic (warts 53%, panniculitis 30%), neoplastic (human papillomavirus+ tumors 35%, Epstein-Barr virus+ tumors 4%), vascular/lymphatic (venous thrombosis 25%, lymphedema 11%), sensorineural hearing loss 76%, miscarriage 33%, and hypothyroidism 14%. Viral infections and lymphedema were more common in individuals with null mutations (P = .038 and P = .006, respectively). Monocytopenia, B, NK, and CD4 lymphocytopenia correlated with the presence of disease (P < .001). GATA2 deficiency unites susceptibility to MDS/AML, immunodeficiency, pulmonary disease, and vascular/lymphatic dysfunction. Early genetic diagnosis is critical to direct clinical management, preventive care, and family screening.


Journal of Medical Genetics | 2005

SLC26A4/PDS genotype-phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): evidence that Pendred syndrome and non-syndromic EVA are distinct clinical and genetic entities

Shannon P. Pryor; Anne C. Madeo; J C Reynolds; N J Sarlis; K S Arnos; Walter E. Nance; Y Yang; Christopher Zalewski; Carmen C. Brewer; Andrew J. Griffith

Enlargement of the vestibular aqueduct (EVA) and its contents, the endolymphatic sac and duct, is the most common radiologic malformation of the inner ear associated with sensorineural hearing loss.1 It may occur alone or in combination with an incomplete partition of the apical turn of the cochlea as part of a complex of malformations known as a Mondini deformity.2 Hearing loss in ears with EVA is typically pre- or perilingual in onset, sensorineural or mixed, and fluctuating or progressive. EVA may be unilateral or bilateral; asymmetry of the hearing loss and the anatomic defect is common in bilateral cases.3–5 EVA has been observed in Pendred syndrome (PS; MIM 274600),6 branchio-oto-renal syndrome (MIM 113650),7 CHARGE (MIM 214800),8 Waardenburg syndrome (MIM 193500, 193510, 600193, 606662),9 and distal renal tubular acidosis with deafness (MIM 267300).10 Familial non-syndromic hearing loss with EVA was described in 199611 and numerous subsequent reports (DFNB4 (MIM 600791), enlarged vestibular aqueduct syndrome (MIM 603545)). EVA is always detected when the ears of individuals with PS are evaluated by both computed tomography (CT) and magnetic resonance imaging (MRI),6 and it has been estimated that PS may comprise up to 10% of prelingual deafness worldwide.3,12,13 PS is inherited in an autosomal recessive manner and is comprised of bilateral hearing loss, EVA, and an iodine organification defect in the thyroid gland, which may lead to goitre. PS is clinically differentiated from non-syndromic EVA by the presence of the thyroid iodine organification defect because goitre is an incompletely penetrant feature of PS.3 When goitre does occur in PS, it is most often euthyroidal and not evident until the second decade of life.3,12,14,15 There can be intrafamilial variability of the goitre, and PS phenocopies with …


Arthritis & Rheumatism | 2012

Sustained Response and Prevention of Damage Progression in Patients With Neonatal-Onset Multisystem Inflammatory Disease Treated With Anakinra: A Cohort Study to Determine Three- and Five-Year Outcomes

Cailin Sibley; Nikki Plass; Joseph Snow; Edythe Wiggs; Carmen C. Brewer; Kelly A. King; Christopher Zalewski; H. Jeffrey Kim; Rachel J. Bishop; Suvimol Hill; Scott M. Paul; Patrick Kicker; Zachary Phillips; Joseph G. Dolan; Brigitte C. Widemann; Nalini Jayaprakash; Frank Pucino; Deborah L. Stone; Dawn Chapelle; Christopher Snyder; Robert Wesley; Raphaela Goldbach-Mansky

OBJECTIVE Blocking interleukin-1 with anakinra in patients with the autoinflammatory syndrome neonatal-onset multisystem inflammatory disease (NOMID) reduces systemic and organ-specific inflammation. However, the impact of long-term treatment has not been established. This study was undertaken to evaluate the long-term effect of anakinra on clinical and laboratory outcomes and safety in patients with NOMID. METHODS We conducted a cohort study of 26 NOMID patients ages 0.80-42.17 years who were followed up at the NIH and treated with anakinra 1-5 mg/kg/day for at least 36 months. Disease activity was assessed using daily diaries, questionnaires, and C-reactive protein level. Central nervous system (CNS) inflammation, hearing, vision, and safety were evaluated. RESULTS Sustained improvements in diary scores, parents/patients and physicians global scores of disease activity, parents/patients pain scores, and inflammatory markers were observed (all P<0.001 at 36 and 60 months). At 36 and 60 months, CNS inflammation was suppressed, with decreased cerebrospinal fluid white blood cell counts (P=0.0026 and P=0.0076, respectively), albumin levels, and opening pressures (P=0.0012 and P<0.001, respectively). Most patients showed stable or improved hearing. Cochlear enhancement on magnetic resonance imaging correlated with continued hearing loss. Visual acuity and peripheral vision were stable. Low optic nerve size correlated with poor visual field. Bony lesions progressed. Adverse events other than viral infections were rare, and all patients continued to receive the medication. CONCLUSION These findings indicate that anakinra provides sustained efficacy in the treatment of NOMID for up to 5 years, with the requirement of dose escalation. Damage progression in the CNS, ear, and eye, but not bone, is preventable. Anakinra is well tolerated overall.


Human Mutation | 2009

Hypo-functional SLC26A4 variants associated with nonsyndromic hearing loss and enlargement of the vestibular aqueduct: genotype-phenotype correlation or coincidental polymorphisms?

Byung Yoon Choi; Andrew K. Stewart; Anne C. Madeo; Shannon P. Pryor; Suzanne Lenhard; Rick A. Kittles; David Eisenman; H. Jeffrey Kim; John K. Niparko; James Thomsen; Kathleen S. Arnos; Walter E. Nance; Kelly A. King; Christopher Zalewski; Carmen C. Brewer; Thomas H. Shawker; James C. Reynolds; Lawrence P. Karniski; Seth L. Alper; Andrew J. Griffith

Hearing loss with enlargement of the vestibular aqueduct (EVA) can be associated with mutations of the SLC26A4 gene encoding pendrin, a transmembrane Cl−/I−/HCO  3− exchanger. Pendrins critical transport substrates are thought to be I− in the thyroid gland and HCO  3− in the inner ear. We previously reported that bi‐allelic SLC26A4 mutations are associated with Pendred syndromic EVA whereas one or zero mutant alleles are associated with nonsyndromic EVA. One study proposed a correlation of nonsyndromic EVA with SLC26A4 alleles encoding pendrin with residual transport activity. Here we describe the phenotypes and SLC26A4 genotypes of 47 EVA patients ascertained since our first report of 39 patients. We sought to determine the pathogenic potential of each variant in our full cohort of 86 patients. We evaluated the trafficking of 11 missense pendrin products expressed in COS‐7 cells. Products that targeted to the plasma membrane were expressed in Xenopus oocytes for measurement of anion exchange activity. p.F335L, p.C565Y, p.L597S, p.M775T, and p.R776C had Cl−/I− and Cl−/HCO  3− exchange rate constants that ranged from 13 to 93% of wild type values. p.F335L, p.L597S, p.M775T and p.R776C are typically found as mono‐allelic variants in nonsyndromic EVA. The high normal control carrier rate for p.L597S indicates it is a coincidentally detected nonpathogenic variant in this context. We observed moderate differential effects of hypo‐functional variants upon exchange of HCO  3− versus I− but their magnitude does not support a causal association with nonsyndromic EVA. However, these alleles could be pathogenic in trans configuration with a mutant allele in Pendred syndrome. Hum Mutat 0, 1–10, 2009.


American Journal of Medical Genetics | 2009

Linear clinical progression, independent of age of onset, in Niemann–Pick disease, type C†

Nicole M. Yanjanin; Jorge I. Vélez; Andrea Gropman; Kelly A. King; Simona Bianconi; Sandra K. Conley; Carmen C. Brewer; Beth Solomon; William J. Pavan; Mauricio Arcos-Burgos; Marc C. Patterson; Forbes D. Porter

Niemann–Pick disease, type C is a neurodegenerative, lysosomal storage disorder with a broad clinical spectrum and a variable age of onset. The absence of a universally accepted clinical outcome measure is an impediment to the design of a therapeutic trial for NPC. Thus, we developed a clinical severity scale to characterize and quantify disease progression. Clinical signs and symptoms in nine major (ambulation, cognition, eye movement, fine motor, hearing, memory, seizures, speech, and swallowing) and eight minor (auditory brainstem response, behavior, gelastic cataplexy, hyperreflexia, incontinence, narcolepsy, psychiatric, and respiratory problems) domains were scored. Data were collected from 18 current NPC patients and were extracted from records of 19 patients. Both patient cohorts showed a linear increase in severity scores over time. Cross‐sectional evaluation of current patients showed a linear increase in the severity score. Longitudinal chart review of historical data demonstrated that although age of onset varied significantly, the rate of progression appeared linear, independent of age of onset, and similar in all patients. Combining the data from both cohorts, disease progression could be modeled by the following equation: Ŝt0+x = Ŝt0 + 1.87x; where Ŝt0 is the initial score and Ŝt0+x is the predicted future score after x years. Our observation that disease progression is similar across patients and independent of age of onset is consistent with a biphasic pathological model for NPC. This scale may prove useful in the characterization of potential biomarkers, and as an outcome measure to monitor disease progression in NPC patients.


Annals of the American Thoracic Society | 2014

Inhaled Amikacin for Treatment of Refractory Pulmonary Nontuberculous Mycobacterial Disease

Kenneth N. Olivier; Pamela A. Shaw; Tanya Glaser; Darshana Bhattacharyya; Michelle Fleshner; Carmen C. Brewer; Christopher Zalewski; Les R. Folio; Jenifer Siegelman; Shamira Shallom; In Kwon Park; Elizabeth P. Sampaio; Adrian M. Zelazny; Steven M. Holland; D. Rebecca Prevots

RATIONALE Treatment of pulmonary nontuberculous mycobacteria, especially Mycobacterium abscessus, requires prolonged, multidrug regimens with high toxicity and suboptimal efficacy. Options for refractory disease are limited. OBJECTIVES We reviewed the efficacy and toxicity of inhaled amikacin in patients with treatment-refractory nontuberculous mycobacterial lung disease. METHODS Records were queried to identify patients who had inhaled amikacin added to failing regimens. Lower airway microbiology, symptoms, and computed tomography scan changes were assessed together with reported toxicity. MEASUREMENTS AND MAIN RESULTS The majority (80%) of the 20 patients who met entry criteria were women; all had bronchiectasis, two had cystic fibrosis and one had primary ciliary dyskinesia. At initiation of inhaled amikacin, 15 were culture positive for M. abscessus and 5 for Mycobacterium avium complex and had received a median (range) of 60 (6, 190) months of mycobacterial treatment. Patients were followed for a median of 19 (1, 50) months. Eight (40%) patients had at least one negative culture and 5 (25%) had persistently negative cultures. A decrease in smear quantity was noted in 9 of 20 (45%) and in mycobacterial culture growth for 10 of 19 (53%). Symptom scores improved in nine (45%), were unchanged in seven (35%), and worsened in four (20%). Improvement on computed tomography scans was noted in 6 (30%), unchanged in 3 (15%), and worsened in 11 (55%). Seven (35%) stopped amikacin due to: ototoxicity in two (10%), hemoptysis in two (10%), and nephrotoxicity, persistent dysphonia, and vertigo in one each. CONCLUSIONS In some patients with treatment-refractory pulmonary nontuberculous mycobacterial disease, the addition of inhaled amikacin was associated with microbiologic and/or symptomatic improvement; however, toxicity was common. Prospective evaluation of inhaled amikacin for mycobacterial disease is warranted.


American Journal of Medical Genetics Part A | 2007

Muenke syndrome (FGFR3-related craniosynostosis): expansion of the phenotype and review of the literature.

Emily S Doherty; Felicitas Lacbawan; Donald W. Hadley; Carmen C. Brewer; Christopher Zalewski; H. Jeff Kim; Beth Solomon; Kenneth N. Rosenbaum; Demetrio L. Domingo; Thomas C. Hart; Brian P. Brooks; La Donna Immken; R. Brian Lowry; Virginia E. Kimonis; Alan Shanske; Fernanda Sarquis Jehee; Maria Rita Passos Bueno; Carol Knightly; Donna M. McDonald-McGinn; Elaine H. Zackai; Maximilian Muenke

Muenke syndrome is an autosomal dominant disorder characterized by coronal suture craniosynostosis, hearing loss, developmental delay, carpal and tarsal fusions, and the presence of the Pro250Arg mutation in the FGFR3 gene. Reduced penetrance and variable expressivity contribute to the wide spectrum of clinical findings in Muenke syndrome. To better define the clinical features of this syndrome, we initiated a study of the natural history of Muenke syndrome. To date, we have conducted a standardized evaluation of nine patients with a confirmed Pro250Arg mutation in FGFR3. We reviewed audiograms from an additional 13 patients with Muenke syndrome. A majority of the patients (95%) demonstrated a mild‐to‐moderate, low frequency sensorineural hearing loss. This pattern of hearing loss was not previously recognized as characteristic of Muenke syndrome. We also report on feeding and swallowing difficulties in children with Muenke syndrome. Combining 312 reported cases of Muenke syndrome with data from the nine NIH patients, we found that females with the Pro250Arg mutation were significantly more likely to be reported with craniosynostosis than males (P < 0.01). Based on our findings, we propose that the clinical management should include audiometric and developmental assessment in addition to standard clinical care and appropriate genetic counseling. Published 2007 Wiley‐Liss, Inc.


Cellular Physiology and Biochemistry | 2011

SLC26A4 Genotypes and Phenotypes Associated with Enlargement of the Vestibular Aqueduct

Taku Ito; Byung Yoon Choi; Kelly A. King; Christopher Zalewski; Julie A. Muskett; Parna Chattaraj; Thomas H. Shawker; James C. Reynolds; Carmen C. Brewer; Philine Wangemann; Seth L. Alper; Andrew J. Griffith

Enlargement of the vestibular aqueduct (EVA) is the most common inner ear anomaly detected in ears of children with sensorineural hearing loss. Pendred syndrome (PS) is an autosomal recessive disorder characterized by bilateral sensorineural hearing loss with EVA and an iodine organification defect that can lead to thyroid goiter. Pendred syndrome is caused by mutations of the SLC26A4 gene. SLC26A4 mutations may also be identified in some patients with nonsyndromic EVA (NSEVA). The presence of two mutant alleles of SLC26A4 is correlated with bilateral EVA and Pendred syndrome, whereas unilateral EVA and NSEVA are correlated with one (M1) or zero (M0) mutant alleles of SLC26A4. Thyroid gland enlargement (goiter) appears to be primarily dependent on the presence of two mutant alleles of SLC26A4 in pediatric patients, but not in older patients. In M1 families, EVA may be associated with a second, undetected SLC26A4 mutation or epigenetic modifications. In M0 families, there is probably etiologic heterogeneity that includes causes other than, or in addition to, monogenic inheritance.

Collaboration


Dive into the Carmen C. Brewer's collaboration.

Top Co-Authors

Avatar

Christopher Zalewski

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kelly A. King

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Griffith

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julie A. Muskett

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anne C. Madeo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shannon P. Pryor

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas B. Friedman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Beth Solomon

United States Department of Health and Human Services

View shared research outputs
Top Co-Authors

Avatar

Chris Zalewski

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge