Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmen C. Canavier is active.

Publication


Featured researches published by Carmen C. Canavier.


The Journal of Neuroscience | 2009

Phase-Resetting Curves Determine Synchronization, Phase Locking, and Clustering in Networks of Neural Oscillators

Srisairam Achuthan; Carmen C. Canavier

Networks of model neurons were constructed and their activity was predicted using an iterated map based solely on the phase-resetting curves (PRCs). The predictions were quite accurate provided that the resetting to simultaneous inputs was calculated using the sum of the simultaneously active conductances, obviating the need for weak coupling assumptions. Fully synchronous activity was observed only when the slope of the PRC at a phase of zero, corresponding to spike initiation, was positive. A novel stability criterion was developed and tested for all-to-all networks of identical, identically connected neurons. When the PRC generated using N − 1 simultaneously active inputs becomes too steep, the fully synchronous mode loses stability in a network of N model neurons. Therefore, the stability of synchrony can be lost by increasing the slope of this PRC either by increasing the network size or the strength of the individual synapses. Existence and stability criteria were also developed and tested for the splay mode in which neurons fire sequentially. Finally, N/M synchronous subclusters of M neurons were predicted using the intersection of parameters that supported both between-cluster splay and within-cluster synchrony. Surprisingly, the splay mode between clusters could enforce synchrony on subclusters that were incapable of synchronizing themselves. These results can be used to gain insights into the activity of networks of biological neurons whose PRCs can be measured.


Biological Cybernetics | 1999

Control of multistability in ring circuits of oscillators.

Carmen C. Canavier; Douglas A. Baxter; John W. Clark; John H. Byrne

Abstract. The essential dynamics of some biological central pattern generators (CPGs) can be captured by a model consisting of N neurons connected in a ring. These circuits, like many oscillatory nonlinear circuits of sufficient complexity, are capable of multistability, that is, of generating different firing patterns distinguished by the phasic relationships between the firing in each circuit element (neuron). Moreover, a shift in firing pattern can be induced by a transient perturbation. A systematic approach, based on phase-response curve (PRC) theory, was used to determine the optimum timing for perturbations that induce a shift in the firing pattern. The first step was to visualize the solution space of the ring circuit, including the attractive basins for each stable firing pattern; this was possible using the relative phase of N−1 oscillators, with respect to an arbitrarily selected reference oscillator, as coordinate axes. The trajectories in this phase space were determined using an iterative mapping based only on the PRCs of the uncoupled component oscillators; this algorithm was called a circuit emulator. For an accurate mapping of the attractive basin of each pattern exhibited by the ring circuit, the emulator had to take into account the effect of a perturbation or input on the timing of two bursts following the onset of the perturbation, rather than just one. The visualization of the attractive basins for rings of two, three, and four oscillators enabled the accurate prediction of the amounts of phase resetting applied to up to N−1 oscillators within a cycle that would induce a transition from any pattern to any another pattern. Finally, the timing and synaptic characterization of an input called the switch signal was adjusted to produce the desired amount of phase resetting.


Journal of Computational Neuroscience | 1999

Sodium Dynamics Underlying Burst Firing and Putative Mechanisms for the Regulation of the Firing Pattern in Midbrain Dopamine Neurons: A Computational Approach

Carmen C. Canavier

A physiologically based multicompartmental computational model of a midbrain dopamine (DA) neuron, calibrated using data from the literature, was developed and used to test the hypothesis that sodium dynamics drive the generation of a slow oscillation postulated to underlie NMDA-evoked bursting activity in a slice preparation. The full compartmental model was reduced to three compartments and ultimately to two variables, while retaining the biophysical interpretation of all parameters. A phase-plane analysis then suggested two mechanisms for the regulation of the firing pattern: (1) bursting activity is favored by manipulations that enhance the region of negative slope in the whole-cell IV curve and inhibited by those manipulations, such as increasing linear currents, that tend to dampen this region and (2) assuming a region of negative slope is present in the IV curve, the bias of the system can be altered, either enabling or disabling bursting. The model provides a coherent framework for interpreting the effects of glutamate, aspartate, NMDA, and GABA agonists and antagonists under current-clamp conditions, as well as the effects of NMDA and barium under voltage-clamp conditions.


Bellman Prize in Mathematical Biosciences | 2010

Pulse coupled oscillators and the phase resetting curve.

Carmen C. Canavier; Srisairam Achuthan

Limit cycle oscillators that are coupled in a pulsatile manner are referred to as pulse coupled oscillators. In these oscillators, the interactions take the form of brief pulses such that the effect of one input dies out before the next is received. A phase resetting curve (PRC) keeps track of how much an input advances or delays the next spike in an oscillatory neuron depending upon where in the cycle the input is applied. PRCs can be used to predict phase locking in networks of pulse coupled oscillators. In some studies of pulse coupled oscillators, a specific form is assumed for the interactions between oscillators, but a more general approach is to formulate the problem assuming a PRC that is generated using a perturbation that approximates the input received in the real biological network. In general, this approach requires that circuit architecture and a specific firing pattern be assumed. This allows the construction of discrete maps from one event to the next. The fixed points of these maps correspond to periodic firing modes and are easier to locate and analyze for stability compared to locating and analyzing periodic modes in the original network directly. Alternatively, maps based on the PRC have been constructed that do not presuppose a firing order. Specific circuits that have been analyzed under the assumption of pulsatile coupling include one to one lockings in a periodically forced oscillator or an oscillator forced at a fixed delay after a threshold event, two bidirectionally coupled oscillators with and without delays, a unidirectional N-ring of oscillators, and N all-to-all networks.


Journal of Computational Neuroscience | 2008

Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved

Selva K. Maran; Carmen C. Canavier

Our goal is to understand how nearly synchronous modes arise in heterogenous networks of neurons. In heterogenous networks, instead of exact synchrony, nearly synchronous modes arise, which include both 1:1 and 2:2 phase-locked modes. Existence and stability criteria for 2:2 phase-locked modes in reciprocally coupled two neuron circuits were derived based on the open loop phase resetting curve (PRC) without the assumption of weak coupling. The PRC for each component neuron was generated using the change in synaptic conductance produced by a presynaptic action potential as the perturbation. Separate derivations were required for modes in which the firing order is preserved and for those in which it alternates. Networks composed of two model neurons coupled by reciprocal inhibition were examined to test the predictions. The parameter regimes in which both types of nearly synchronous modes are exhibited were accurately predicted both qualitatively and quantitatively provided that the synaptic time constant is short with respect to the period and that the effect of second order resetting is considered. In contrast, PRC methods based on weak coupling could not predict 2:2 modes and did not predict the 1:1 modes with the level of accuracy achieved by the strong coupling methods. The strong coupling prediction methods provide insight into what manipulations promote near-synchrony in a two neuron network and may also have predictive value for larger networks, which can also manifest changes in firing order. We also identify a novel route by which synchrony is lost in mildly heterogenous networks.


Biophysical Journal | 2003

Dynamics from a Time Series: Can We Extract the Phase Resetting Curve from a Time Series?

S.A. Oprisan; Vatsala Thirumalai; Carmen C. Canavier

Recordings of the membrane potential from a bursting neuron were used to reconstruct the phase curve for that neuron for a limited set of perturbations. These perturbations were inhibitory synaptic conductance pulses able to shift the membrane potential below the most hyperpolarized level attained in the free running mode. The extraction of the phase resetting curve from such a one-dimensional time series requires reconstruction of the periodic activity in the form of a limit cycle attractor. Resetting was found to have two components. In the first component, if the pulse was applied during a burst, the burst was truncated, and the time until the next burst was shortened in a manner predicted by movement normal to the limit cycle. By movement normal to the limit cycle, we mean a switch between two well-defined solution branches of a relaxation-like oscillator in a hysteretic manner enabled by the existence of a singular dominant slow process (variable). In the second component, the onset of the burst was delayed until the end of the hyperpolarizing pulse. Thus, for the pulse amplitudes we studied, resetting was independent of amplitude but increased linearly with pulse duration. The predicted and the experimental phase resetting curves for a pyloric dilator neuron show satisfactory agreement. The method was applied to only one pulse per cycle, but our results suggest it could easily be generalized to accommodate multiple inputs.


Neural Computation | 2002

The influence of limit cycle topology on the phase resetting curve

Sorinel A. Oprisan; Carmen C. Canavier

Understanding the phenomenology of phase resetting is an essential step toward developing a formalism for the analysis of circuits composed of bursting neurons that receive multiple, and sometimes overlapping, inputs. If we are to use phase-resetting methods to analyze these circuits, we can either generate phase-resetting curves (PRCs) for all possible inputs and combinations of inputs, or we can develop an understanding of how to construct PRCs for arbitrary perturbations of a given neuron. The latter strategy is the goal of this study. We present a geometrical derivation of phase resetting of neural limit cycle oscillators in response to short current pulses. A geometrical phase is defined as the distance traveled along the limit cycle in the appropriate phase space. The perturbations in current are treated as displacements in the direction corresponding to membrane voltage. We show that for type I oscillators, the direction of a perturbation in current is nearly tangent to the limit cycle; hence, the projection of the displacement in voltage onto the limit cycle is sufficient to give the geometrical phase resetting. In order to obtain the phase resetting in terms of elapsed time or temporal phase, a mapping between geometrical and temporal phase is obtained empirically and used to make the conversion. This mapping is shown to be an invariant of the dynamics. Perturbations in current applied to type II oscillators produce significant normal displacements from the limit cycle, so the difference in angular velocity at displaced points compared to the angular velocity on the limit cycle must be taken into account. Empirical attempts to correct for differences in angular velocity (amplitude versus phase effects in terms of a circular coordinate system) during relaxation back to the limit cycle achieved some success in the construction of phase-resetting curves for type II model oscillators. The ultimate goal of this work is the extension of these techniques to biological circuits comprising type II neural oscillators, which appear frequently in identified central pattern-generating circuits.


Journal of Computational Neuroscience | 2010

Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron.

Anna Y. Kuznetsova; Marco A. Huertas; Alexey Kuznetsov; Carlos A. Paladini; Carmen C. Canavier

Dopaminergic (DA) neurons of the mammalian midbrain exhibit unusually low firing frequencies in vitro. Furthermore, injection of depolarizing current induces depolarization block before high frequencies are achieved. The maximum steady and transient rates are about 10 and 20 Hz, respectively, despite the ability of these neurons to generate bursts at higher frequencies in vivo. We use a three-compartment model calibrated to reproduce DA neuron responses to several pharmacological manipulations to uncover mechanisms of frequency limitation. The model exhibits a slow oscillatory potential (SOP) dependent on the interplay between the L-type Ca2+ current and the small conductance K+ (SK) current that is unmasked by fast Na+ current block. Contrary to previous theoretical work, the SOP does not pace the steady spiking frequency in our model. The main currents that determine the spontaneous firing frequency are the subthreshold L-type Ca2+ and the A-type K+ currents. The model identifies the channel densities for the fast Na+ and the delayed rectifier K+ currents as critical parameters limiting the maximal steady frequency evoked by a depolarizing pulse. We hypothesize that the low maximal steady frequencies result from a low safety factor for action potential generation. In the model, the rate of Ca2+ accumulation in the distal dendrites controls the transient initial frequency in response to a depolarizing pulse. Similar results are obtained when the same model parameters are used in a multi-compartmental model with a realistic reconstructed morphology, indicating that the salient contributions of the dendritic architecture have been captured by the simpler model.


Journal of Neurophysiology | 2009

Functional Phase Response Curves: A Method for Understanding Synchronization of Adapting Neurons

Jianxia Cui; Carmen C. Canavier; Robert J. Butera

Phase response curves (PRCs) for a single neuron are often used to predict the synchrony of mutually coupled neurons. Previous theoretical work on pulse-coupled oscillators used single-pulse perturbations. We propose an alternate method in which functional PRCs (fPRCs) are generated using a train of pulses applied at a fixed delay after each spike, with the PRC measured when the phasic relationship between the stimulus and the subsequent spike in the neuron has converged. The essential information is the dependence of the recovery time from pulse onset until the next spike as a function of the delay between the previous spike and the onset of the applied pulse. Experimental fPRCs in Aplysia pacemaker neurons were different from single-pulse PRCs, principally due to adaptation. In the biological neuron, convergence to the fully adapted recovery interval was slower at some phases than that at others because the change in the effective intrinsic period due to adaptation changes the effective phase resetting in a way that opposes and slows the effects of adaptation. The fPRCs for two isolated adapting model neurons were used to predict the existence and stability of 1:1 phase-locked network activity when the two neurons were coupled. A stability criterion was derived by linearizing a coupled map based on the fPRC and the existence and stability criteria were successfully tested in two-simulated-neuron networks with reciprocal inhibition or excitation. The fPRC is the first PRC-based tool that can account for adaptation in analyzing networks of neural oscillators.


Current Opinion in Neurobiology | 2015

Phase-resetting as a tool of information transmission.

Carmen C. Canavier

Models of information transmission in the brain largely rely on firing rate codes. The abundance of oscillatory activity in the brain suggests that information may be also encoded using the phases of ongoing oscillations. Sensory perception, working memory and spatial navigation have been hypothesized to use phase codes, and cross-frequency coordination and phase synchronization between brain areas have been proposed to gate the flow of information. Phase codes generally require the phase of the oscillations to be reset at specific reference points for consistent coding, and coordination between oscillators requires favorable phase resetting characteristics. Recent evidence supports a role for neural oscillations in providing temporal reference windows that allow for correct parsing of phase-coded information.

Collaboration


Dive into the Carmen C. Canavier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred H Sieling

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Butera

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Na Yu

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Huifang Ji

University of Maryland

View shared research outputs
Top Co-Authors

Avatar

Kun Qian

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge