Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmen Capel is active.

Publication


Featured researches published by Carmen Capel.


Frontiers in Plant Science | 2015

Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL mapping and epistatic interaction analysis in common bean

Ana González; Fernando J. Yuste-Lisbona; A. Paula Rodiño; Antonio M. De Ron; Carmen Capel; Manuel García-Alcázar; Rafael Lozano; Marta Santalla

Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes anthracnose disease in common bean. Despite the genetics of anthracnose resistance has been studied for a long time, few quantitative trait loci (QTLs) studies have been conducted on this species. The present work examines the genetic basis of quantitative resistance to races 23 and 1545 of C. lindemuthianum in different organs (stem, leaf and petiole). A population of 185 recombinant inbred lines (RIL) derived from the cross PMB0225 × PHA1037 was evaluated for anthracnose resistance under natural and artificial photoperiod growth conditions. Using multi-environment QTL mapping approach, 10 and 16 main effect QTLs were identified for resistance to anthracnose races 23 and 1545, respectively. The homologous genomic regions corresponding to 17 of the 26 main effect QTLs detected were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins. Among them, it is worth noting that the main effect QTLs detected on linkage group 05 for resistance to race 1545 in stem, petiole and leaf were located within a 1.2 Mb region. The NL gene Phvul.005G117900 is located in this region, which can be considered an important candidate gene for the non-organ-specific QTL identified here. Furthermore, a total of 39 epistatic QTL (E-QTLs) (21 for resistance to race 23 and 18 for resistance to race 1545) involved in 20 epistatic interactions (eleven and nine interactions for resistance to races 23 and 1545, respectively) were identified. None of the main and epistatic QTLs detected displayed significant environment interaction effects. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for anthracnose resistance improvement in common bean through application of marker-assisted selection (MAS).


Journal of Experimental Botany | 2014

Transcriptional and hormonal regulation of petal and stamen development by STAMENLESS, the tomato (Solanum lycopersicum L.) orthologue to the B-class APETALA3 gene

Muriel Quinet; Gwennaël Bataille; Petre I. Dobrev; Carmen Capel; Pedro Gómez; Juan Capel; Stanley Lutts; Václav Motyka; Trinidad Angosto; Rafael Lozano

Summary Characterization of stamenless mutants reveals that petal and stamen identity in tomato depends on gene–hormone interactions, as mediated by the tomato APETALA3 orthologue STAMENLESS gene (SL, syn. TAP3, SlDEF, LeAP3).


Theoretical and Applied Genetics | 2011

Codominant PCR-based markers and candidate genes for powdery mildew resistance in melon (Cucumis melo L.)

Fernando J. Yuste-Lisbona; Carmen Capel; María L. Gómez-Guillamón; Juan Capel; Ana I. López-Sesé; Rafael Lozano

Powdery mildew caused by Podosphaera xanthii is a major disease in melon crops, and races 1, 2, and 5 of this fungus are those that occur most frequently in southern Europe. The genotype TGR-1551 bears a dominant gene that provides resistance to these three races of P. xanthii. By combining bulked segregant analysis and amplified fragment length polymorphisms (AFLP), we identified eight markers linked to this dominant gene. Cloning and sequencing of the selected AFLP fragments allowed the development of six codominant PCR-based markers which mapped on the linkage group (LG) V. Sequence analysis of these markers led to the identification of two resistance-like genes, MRGH5 and MRGH63, belonging to the nucleotide binding site (NBS)-leucine-rich repeat (LRR) gene family. Quantitative trait loci (QTL) analysis detected two QTLs, Pm-R1-2 and Pm-R5, the former significantly associated with the resistance to races 1 and 2 (LOD score of 26.5 and 33.3; 53.6 and 61.9% of phenotypic variation, respectively), and the latter with resistance to race 5 (LOD score of 36.8; 65.5% of phenotypic variation), which have been found to be colocalized with the MRGH5 and MRGH63 genes, respectively. The results suggest that the cluster of NBS-LRR genes identified in LG V harbours candidate genes for resistance to races 1, 2, and 5 of P. xanthii. The evaluation of other resistant germplasm showed that the codominant markers here reported are also linked to the Pm-w resistance gene carried by the accession ‘WMR-29’ proving their usefulness as genotyping tools in melon breeding programmes.


BMC Plant Biology | 2012

Marker-based linkage map of Andean common bean (Phaseolus vulgaris L.) and mapping of QTLs underlying popping ability traits

Fernando J. Yuste-Lisbona; Marta Santalla; Carmen Capel; Manuel García-Alcázar; María De La Fuente; Juan Capel; Antonio M. De Ron; Rafael Lozano

BackgroundNuña bean is a type of ancient common bean (Phaseolus vulgaris L.) native to the Andean region of South America, whose seeds possess the unusual property of popping. The nutritional features of popped seeds make them a healthy low fat and high protein snack. However, flowering of nuña bean only takes place under short-day photoperiod conditions, which means a difficulty to extend production to areas where such conditions do not prevail. Therefore, breeding programs of adaptation traits will facilitate the diversification of the bean crops and the development of new varieties with enhanced healthy properties. Although the popping trait has been profusely studied in maize (popcorn), little is known about the biology and genetic basis of the popping ability in common bean. To obtain insights into the genetics of popping ability related traits of nuña bean, a comprehensive quantitative trait loci (QTL) analysis was performed to detect single-locus and epistatic QTLs responsible for the phenotypic variance observed in these traits.ResultsA mapping population of 185 recombinant inbred lines (RILs) derived from a cross between two Andean common bean genotypes was evaluated for three popping related traits, popping dimension index (PDI), expansion coefficient (EC), and percentage of unpopped seeds (PUS), in five different environmental conditions. The genetic map constructed included 193 loci across 12 linkage groups (LGs), covering a genetic distance of 822.1 cM, with an average of 4.3 cM per marker. Individual and multi-environment QTL analyses detected a total of nineteen single-locus QTLs, highlighting among them the co-localized QTLs for the three popping ability traits placed on LGs 3, 5, 6, and 7, which together explained 24.9, 14.5, and 25.3% of the phenotypic variance for PDI, EC, and PUS, respectively. Interestingly, epistatic interactions among QTLs have been detected, which could have a key role in the genetic control of popping.ConclusionsThe QTLs here reported constitute useful tools for marker assisted selection breeding programs aimed at improving nuña bean cultivars, as well as for extending our knowledge of the genetic determinants and genotype x environment interaction involved in the popping ability traits of this bean crop.


Molecular Breeding | 2014

Genetic variation underlying pod size and color traits of common bean depends on quantitative trait loci with epistatic effects

Fernando J. Yuste-Lisbona; Ana González; Carmen Capel; Manuel García-Alcázar; Juan Capel; Antonio M. De Ron; Marta Santalla; Rafael Lozano

Common bean is an important vegetable legume in many regions of the world. Size and color of fresh pods are the key factors for deciding the commercial acceptance of bean as a fresh vegetable. The genetic basis of important horticultural traits of common bean is still poorly understood, which hinders DNA marker-assisted breeding in this crop. Here we report the identification of single-locus and epistatic quantitative trait loci (QTLs), as well as their environment interaction effects for six pod traits, namely width, thickness, length, size index, beak length and color, using an Andean intra-gene pool recombinant inbred line population from a cross between a cultivated common bean and an exotic nuña bean. The QTL analyses performed detected a total of 23 QTLs (single-locus QTLs and epistatic QTLs): five with only individual additive effects and six with only epistatic effects, while the remaining twelve showed both effects. These QTLs were distributed across linkage groups (LGs) 1, 2, 4, 6, 7, 8, 9, 10 and 11; particularly noteworthy are the QTLs for pod size co-located on LGs 1 and 4, indicative of tight linkage or genes with pleiotropic effects governing these traits. Overall, the results obtained showed that additive and epistatic effects are the major genetic basis of pod size and color traits. The mapping of QTLs including epistatic loci for the six pod traits evaluated provides support for implementing marker-assisted selection toward genetic improvement of common bean.


Theoretical and Applied Genetics | 2017

QTL mapping of fruit mineral contents provides new chances for molecular breeding of tomato nutritional traits

Carmen Capel; Fernando J. Yuste-Lisbona; Gloria López-Casado; Trinidad Angosto; Antonio Heredia; Jesús Cuartero; Rafael Fernández-Muñoz; Rafael Lozano; Juan Capel

Key messageAgronomical characterization of a RIL population for fruit mineral contents allowed for the identification of QTL controlling these fruit quality traits, flanked by co-dominant markers useful for marker-assisted breeding.AbstractTomato quality is a multi-variant attribute directly depending on fruit chemical composition, which in turn determines the benefits of tomato consumption for human health. Commercially available tomato varieties possess limited variability in fruit quality traits. Wild species, such as Solanum pimpinellifolium, could provide different nutritional advantages and can be used for tomato breeding to improve overall fruit quality. Determining the genetic basis of the inheritance of all the traits that contribute to tomato fruit quality will increase the efficiency of the breeding program necessary to take advantage of the wild species variability. A high-density linkage map has been constructed from a recombinant inbred line (RIL) population derived from a cross between tomato Solanum lycopersicum and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit mineral contents during three consecutive growing seasons. The data obtained allowed for the identification of main QTL and novel epistatic interaction among QTL controlling fruit mineral contents on the basis of a multiple-environment analysis. Most of the QTL were flanked by candidate genes providing valuable information for both tomato breeding for new varieties with novel nutritional properties and the starting point to identify the genes underlying these QTL, which will help to reveal the genetic basis of tomato fruit nutritional properties.


Plant Physiology | 2017

The SlCBL10 Calcineurin B-Like Protein Ensures Plant Growth under Salt Stress by Regulating Na+ and Ca2+ Homeostasis

Isabel Egea; Benito Pineda; Ana Ortíz-Atienza; Félix A. Plasencia; Stéphanie Drevensek; Begoña García-Sogo; Fernando J. Yuste-Lisbona; Javier Barrero-Gil; Alejandro Atarés; Francisco B. Flores; Fredy Barneche; Trinidad Angosto; Carmen Capel; Julio Salinas; Wim H. Vriezen; Elisabeth Esch; Chris Bowler; Maria C. Bolarin; Vicente Moreno; Rafael Lozano

Tomato CALCINEURIN B-LIKE PROTEIN 10 (SlCBL10) ensures plant growth by regulating proper distribution of Na+ and Ca2+ in the shoot apical meristem and developing organs under salt stress. Characterization of a new tomato (Solanum lycopersicum) T-DNA mutant allowed for the isolation of the CALCINEURIN B-LIKE PROTEIN 10 (SlCBL10) gene whose lack of function was responsible for the severe alterations observed in the shoot apex and reproductive organs under salinity conditions. Physiological studies proved that SlCBL10 gene is required to maintain a proper low Na+/Ca2+ ratio in growing tissues allowing tomato growth under salt stress. Expression analysis of the main responsible genes for Na+ compartmentalization (i.e. Na+/H+ EXCHANGERs, SALT OVERLY SENSITIVE, HIGH-AFFINITY K+ TRANSPORTER 1;2, H+-pyrophosphatase AVP1 [SlAVP1] and V-ATPase [SlVHA-A1]) supported a reduced capacity to accumulate Na+ in Slcbl10 mutant leaves, which resulted in a lower uploading of Na+ from xylem, allowing the toxic ion to reach apex and flowers. Likewise, the tomato CATION EXCHANGER 1 and TWO-PORE CHANNEL 1 (SlTPC1), key genes for Ca2+ fluxes to the vacuole, showed abnormal expression in Slcbl10 plants indicating an impaired Ca2+ release from vacuole. Additionally, complementation assay revealed that SlCBL10 is a true ortholog of the Arabidopsis (Arabidopsis thaliana) CBL10 gene, supporting that the essential function of CBL10 is conserved in Arabidopsis and tomato. Together, the findings obtained in this study provide new insights into the function of SlCBL10 in salt stress tolerance. Thus, it is proposed that SlCBL10 mediates salt tolerance by regulating Na+ and Ca2+ fluxes in the vacuole, cooperating with the vacuolar cation channel SlTPC1 and the two vacuolar H+-pumps, SlAVP1 and SlVHA-A1, which in turn are revealed as potential targets of SlCBL10.


Scientific Reports | 2017

Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival

Manuel García-Alcázar; Estela Giménez; Benito Pineda; Carmen Capel; Begoña García-Sogo; Sibilla Sánchez; Fernando J. Yuste-Lisbona; Trinidad Angosto; Juan Capel; Vicente Moreno; Rafael Lozano

Photosynthetic activity is indispensable for plant growth and survival and it depends on the synthesis of plastidial isoprenoids as chlorophylls and carotenoids. In the non-mevalonate pathway (MEP), the 1-deoxy-D-xylulose-5-phosphate synthase 1 (DXS1) enzyme has been postulated to catalyze the rate-limiting step in the formation of plastidial isoprenoids. In tomato, the function of DXS1 has only been studied in fruits, and hence its functional relevance during plant development remains unknown. Here we report the characterization of the wls-2297 tomato mutant, whose severe deficiency in chlorophylls and carotenoids promotes an albino phenotype. Additionally, growth of mutant seedlings was arrested without developing vegetative organs, which resulted in premature lethality. Gene cloning and silencing experiments revealed that the phenotype of wls-2297 mutant was caused by 38.6 kb-deletion promoted by a single T-DNA insertion affecting the DXS1 gene. This was corroborated by in vivo and molecular complementation assays, which allowed the rescue of mutant phenotype. Further characterization of tomato plants overexpressing DXS1 and comparative expression analysis indicate that DXS1 may play other important roles besides to that proposed during fruit carotenoid biosynthesis. Taken together, these results demonstrate that DXS1 is essentially required for the development and survival of tomato plants.


Plant Signaling & Behavior | 2017

The phenotype alterations showed by the res tomato mutant disappear when the plants are grown under semi-arid conditions: Is the res mutant tolerant to multiple stresses?

José O. Garcia-Abellan; Irene Albaladejo; Isabel Egea; Francisco B. Flores; Carmen Capel; Juan Capel; Trinidad Angosto; Rafael Lozano; Maria C. Bolarin

ABSTRACT The res (restored cell structure by salinity) mutant, recently identified as the first tomato mutant accumulating jasmonate (JA) without stress, exhibited important morphological alterations when plants were grown under control conditions but these disappeared under salt stress. Since the defense responses against stresses are activated in the res mutant as a consequence of the increased expression of genes from the JA biosynthetic and signaling pathways, the mutant may display a tolerance response not only to salt stress but also to multiple stresses. Here, we show that when res mutant plants are grown under the summer natural conditions of the Mediterranean area, with high temperatures and low relative humidity, the characteristic leaf chlorosis exhibited by the mutant disappears and leaves become dark green over time, with a similar aspect to WT leaves. Moreover, the mutant plants are able to achieve chlorophyll and fluorescence levels similar to those of WT. These results hint that research on res tomato mutant may allow very significant advances in the knowledge of defense responses activated by JA against multiple stresses.


Plant Biotechnology Journal | 2017

A collection of enhancer trap insertional mutants for functional genomics in tomato

Fernando Pérez-Martín; Fernando J. Yuste-Lisbona; Benito Pineda; María Pilar Angarita-Díaz; Begoña García-Sogo; Teresa Antón; Sibilla Sánchez; Estela Giménez; Alejandro Atarés; Antonia Fernández-Lozano; Ana Ortíz-Atienza; Manuel García-Alcázar; Laura Castañeda; Rocío Fonseca; Carmen Capel; Geraldine Goergen; Jorge Rodrigo Sánchez; Jorge L. Quispe; Juan Capel; Trinidad Angosto; Vicente Moreno; Rafael Lozano

Summary With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T‐DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T‐DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium‐mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T‐DNA mutants, one of these genes codes for a UTP‐glucose‐1‐phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T‐DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy‐fruited model species.

Collaboration


Dive into the Carmen Capel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Capel

University of Almería

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Santalla

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Antonio M. De Ron

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana González

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Begoña García-Sogo

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Benito Pineda

Polytechnic University of Valencia

View shared research outputs
Researchain Logo
Decentralizing Knowledge