Carmen Cavada
Autonomous University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carmen Cavada.
The Journal of Neuroscience | 2005
Miguel Ángel Sánchez-González; Miguel Ángel García-Cabezas; Beatriz Rico; Carmen Cavada
The thalamus relays information to the cerebral cortex from subcortical centers or other cortices; in addition, it projects to the striatum and amygdala. The thalamic relay function is subject to modulation, so the flow of information to the target regions may change depending on behavioral demands. Modulation of thalamic relay by dopamine is not currently acknowledged, perhaps because dopamine innervation is reportedly scant in the rodent thalamus. We show that dopaminergic axons profusely target the human and macaque monkey thalamus using immunolabeling with three markers of the dopaminergic phenotype (tyrosine hydroxylase, dopamine, and the dopamine transporter). The dopamine innervation is especially prominent in specific association, limbic, and motor thalamic nuclei, where the densities of dopaminergic axons are as high as or higher than in the cortical area with the densest dopamine innervation. We also identified the dopaminergic neurons projecting to the macaque thalamus using retrograde tract-tracing combined with immunohistochemistry. The origin of thalamic dopamine is multiple, and thus more complex, than in any other dopaminergic system defined to date: dopaminergic neurons of the hypothalamus, periaqueductal gray matter, ventral mesencephalon, and the lateral parabrachial nucleus project bilaterally to the monkey thalamus. We propose a novel dopaminergic system that targets the primate thalamus and is independent from the previously defined nigrostriatal, mesocortical, and mesolimbic dopaminergic systems. Investigating this “thalamic dopaminergic system” should further our understanding of higher brain functions and conditions such as Parkinsons disease, schizophrenia, and drug addiction.
NeuroImage | 2007
Miguel Ángel García-Cabezas; Beatriz Rico; Miguel Ángel Sánchez-González; Carmen Cavada
We recently defined the thalamic dopaminergic system in primates; it arises from numerous dopaminergic cell groups and selectively targets numerous thalamic nuclei. Given the central position of the thalamus in subcortical and cortical interplay, and the functional relevance of dopamine neuromodulation in the brain, detailing dopamine distribution in the thalamus should supply important information. To this end we performed immunohistochemistry for dopamine and the dopamine transporter in the thalamus of macaque monkeys and humans to generate maps, in the stereotaxic coronal plane, of the distribution of dopaminergic axons. The dopamine innervation of the thalamus follows the same pattern in both species and is most dense in midline limbic nuclei, the mediodorsal and lateral posterior association nuclei, and in the ventral lateral and ventral anterior motor nuclei. This distribution suggests that thalamic dopamine has a prominent role in emotion, attention, cognition and complex somatosensory and visual processing, as well as in motor control. Most thalamic dopaminergic axons are thin and varicose and target both the neuropil and small blood vessels, suggesting that, besides neuronal modulation, thalamic dopamine may have a direct influence on microcirculation. The maps provided here should be a useful reference in future experimental and neuroimaging studies aiming at clarifying the role of the thalamic dopaminergic system in health and in conditions involving brain dopamine, including Parkinsons disease, drug addiction and schizophrenia.
Cerebral Cortex | 2009
Miguel Ángel García-Cabezas; Patricia Martínez-Sánchez; Miguel Ángel Sánchez-González; Miguel Garzón; Carmen Cavada
We recently identified the thalamic dopaminergic system in the human and macaque monkey brains, and, based on earlier reports on the paucity of dopamine in the rat thalamus, hypothesized that this dopaminergic system was particularly developed in primates. Here we test this hypothesis using immunohistochemistry against the dopamine transporter (DAT) in adult macaque and rat brains. The extent and density of DAT-immunoreactive (-ir) axons were remarkably greater in the macaque dorsal thalamus, where the mediodorsal association nucleus and the ventral motor nuclei held the densest immunolabeling. In contrast, sparse DAT immunolabeling was present in the rat dorsal thalamus; it was mainly located in the mediodorsal, paraventricular, ventral medial, and ventral lateral nuclei. The reticular nucleus, zona incerta, and lateral habenular nucleus held numerous DAT-ir axons in both species. Ultrastructural analysis in the macaque mediodorsal nucleus revealed that thalamic interneurons are a main postsynaptic target of DAT-ir axons; this suggests that the marked expansion of the dopamine innervation in the primate in comparison to the rodent thalamus may be related to the presence of a sizable interneuron population in primates. We remark that it is important to be aware of brain species differences when using animal models of human brain disease.
Journal of Biological Chemistry | 2006
Rocío Serantes; Francisco Arnalich; Maria E. Figueroa; Marta Salinas; Eva Andrés-Mateos; Rosa Codoceo; Jaime Renart; Carlos Matute; Carmen Cavada; Antonio Cuadrado; Carmen Montiel
Sepsis-associated encephalopathy (SAE) is a frequent but poorly understood neurological complication in sepsis that negatively influences survival. Here we present clinical and experimental evidence that this brain dysfunction may be related to altered neurotransmission produced by inflammatory mediators. Compared with septic patients, SAE patients had higher interleukin-1β (IL-1β) plasma levels; interestingly, these levels decreased once the encephalopathy was resolved. A putative IL-1β effect on type A γ-aminobutyric acid receptors (GABAARs), which mediate fast synaptic transmission in most cerebral inhibitory synapses in mammals, was investigated in cultured hippocampal neurons and in Xenopus oocytes expressing native or foreign rat brain GABAARs, respectively. Confocal images in both cell types revealed that IL-1β increases recruitment of GABAARs to the cell surface. Moreover, brief applications of IL-1β to voltage-clamped oocytes yielded a delayed potentiation of the GABA-elicited chloride currents (IGABA); this effect was suppressed by IL-1ra, the natural IL-1 receptor (IL-1RI) antagonist. Western blot analysis combined with IGABA recording and confocal images of GABAA Rs in oocytes showed that IL-1β stimulates the IL-1RI-dependent phosphatidylinositol 3-kinase activation and the consequent facilitation of phospho-Akt-mediated insertion of GABAARs into the cell surface. The interruption of this signaling pathway by specific phosphatidylinositol 3-kinase or Akt inhibitors suppresses the cytokine-mediated effects on GABAAR, whereas activation of the conditionally active form of Akt1 (myr-Akt1.ER*) with 4-hydroxytamoxifen reproduces the effects. These findings point to a previously unrecognized signaling pathway that connects IL-1β with increased “GABAergic tone.” We propose that through this mechanism IL-1β might alter synaptic strength at central GABAergic synapses and so contribute to the cognitive dysfunction observed in SAE.
Experimental Neurology | 2007
Ana I. Rojo; Carmen Cavada; María Rosa de Sagarra; Antonio Cuadrado
Epidemiological studies suggest that some pesticides might constitute a risk factor for Parkinsons disease (PD). However, risk assessment cannot be performed in the current experimental animal models because they use non-natural pathways of pesticide exposure, such as intraperitoneal or intravenous injection, that might bypass body defences. A new model based on daily inoculation of neurotoxins in the nasal cavity of C57BL/6 mice for 30 days was used to evaluate risk of three complex I inhibitors, 1-methyl-4-phenyl1,2,3,6-tetrahydropyridine (MPTP), rotenone and paraquat. These compounds displayed very different effects on motor activity, striatal dopamine and dihydroxyphenylacetic acid (DOPAC) levels and loss of dopaminergic neurons. MPTP-treated mice developed motor deficits that correlated with a severe depletion of striatal dopamine levels, and loss of tyrosine hydroxylase staining in substantia nigra and striatum. By contrast, rotenone-treated mice or rats were asymptomatic. Paraquat induced severe hypokinesia and vestibular damage but did not alter the nigrostriatal system. The new animal model described here, based on chronic intranasal inoculation of neurotoxicants, provides a new tool to assess the potential danger of environmental toxins as risk factors for development of PD.
Brain Research | 1983
Carmen Cavada; Fernando Reinoso-Suárez
Following injections of horseradish peroxidase in area 20 of the cat neuronal labeling was observed in visual areas 19, 21 and lateral suprasylvian as well as in other sensory, association and limbic related neo- and allocortical regions, both ipsi- and contralaterally. Labeled neurons in the thalamus were identified in the LP-Pu complex, in the LIc, in the midline and intralaminar nuclei, and in the nuclei ventralis anterior, dorsalis medialis, lateralis anterior, lateralis medialis, ventralis posteroinferior, and in the medial subdivision of the posterior group. Projections from other subcortical prosencephalic and brain stem regions are also described.
The Journal of Neuroscience | 2014
Christian Pifl; Alex Rajput; Harald Reither; X Javier Blesa; Carmen Cavada; Jose A. Obeso; Ali H. Rajput; Oleh Hornykiewicz
The cause of degeneration of nigrostriatal dopamine (DA) neurons in idiopathic Parkinsons disease (PD) is still unknown. Intraneuronally, DA is largely confined to synaptic vesicles where it is protected from metabolic breakdown. In the cytoplasm, however, free DA can give rise to formation of cytotoxic free radicals. Normally, the concentration of cytoplasmic DA is kept at a minimum by continuous pumping activity of the vesicular monoamine transporter (VMAT)2. Defects in handling of cytosolic DA by VMAT2 increase levels of DA-generated oxy radicals ultimately resulting in degeneration of DAergic neurons. Here, we isolated for the first time, DA storage vesicles from the striatum of six autopsied brains of PD patients and four controls and measured several indices of vesicular DA storage mechanisms. We found that (1) vesicular uptake of DA and binding of the VMAT2-selective label [3H]dihydrotetrabenazine were profoundly reduced in PD by 87–90% and 71–80%, respectively; (2) after correcting for DA nerve terminal loss, DA uptake per VMAT2 transport site was significantly reduced in PD caudate and putamen by 53 and 55%, respectively; (3) the VMAT2 transport defect appeared specific for PD as it was not present in Macaca fascicularis (7 MPTP and 8 controls) with similar degree of MPTP-induced nigrostriatal neurodegeneration; and (4) DA efflux studies and measurements of acidification in the vesicular preparations suggest that the DA storage impairment was localized at the VMAT2 protein itself. We propose that this VMAT2 defect may be an early abnormality promoting mechanisms leading to nigrostriatal DA neuron death in PD.
Neurobiology of Disease | 2012
Javier Blesa; Christian Pifl; Miguel Ángel Sánchez-González; Carlos Juri; Miguel Ángel García-Cabezas; Rebeca Adánez; Elena Iglesias; María Collantes; Iván Peñuelas; J.J. Sánchez-Hernández; Maria C. Rodriguez-Oroz; Carlos Avendaño; Oleh Hornykiewicz; Carmen Cavada; Jose A. Obeso
Parkinsons disease (PD) is diagnosed when striatal dopamine (DA) loss exceeds a certain threshold and the cardinal motor features become apparent. The presymptomatic compensatory mechanisms underlying the lack of motor manifestations despite progressive striatal depletion are not well understood. Most animal models of PD involve the induction of a severe dopaminergic deficit in an acute manner, which departs from the typical, chronic evolution of PD in humans. We have used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administered to monkeys via a slow intoxication protocol to produce a more gradual development of nigral lesion. Twelve control and 38 MPTP-intoxicated monkeys were divided into four groups. The latter included monkeys who were always asymptomatic, monkeys who recovered after showing mild parkinsonian signs, and monkeys with stable, moderate and severe parkinsonism. We found a close correlation between cell loss in the substantia nigra pars compacta (SNc) and striatal dopaminergic depletion and the four motor states. There was an overall negative correlation between the degree of parkinsonism (Kurlan scale) and in vivo PET ((18)F-DOPA K(i) and (11)C-DTBZ binding potential), as well as with TH-immunoreactive cell counts in SNc, striatal dopaminergic markers (TH, DAT and VMAT2) and striatal DA concentration. This intoxication protocol permits to establish a critical threshold of SNc cell loss and dopaminergic innervation distinguishing between the asymptomatic and symptomatic parkinsonian stages. Compensatory changes in nigrostriatal dopaminergic activity occurred in the recovered and parkinsonian monkeys when DA depletion was at least 88% of control, and accordingly may be considered too late to explain compensatory mechanisms in the early asymptomatic period. Our findings suggest the need for further exploration of the role of non-striatal mechanisms in PD prior to the development of motor features.
Brain Research | 1983
Carmen Cavada; Alfonso Llamas; Fernando Reinoso-Suárez
Afferent connections of the prefrontal cortex of the cat arising in allocortical regions have been investigated using the horseradish peroxidase retrograde transport technique. Our results demonstrate the existence of projections from the olfactory peduncle, anterior and posterior prepiriform cortices, cortico-amygdaloid transition area, entorhinal cortex, ventral, caudal and dorsal subiculum and postsubiculum to the prefrontal cortex.
European Journal of Neuroscience | 2006
Ana I. Rojo; Celia Montero; María Salazar; Ryan M. Close; Javier Fernández-Ruiz; Miguel Ángel Sánchez-González; María Rosa de Sagarra; Vernice Jackson-Lewis; Carmen Cavada; Antonio Cuadrado
The aetiology of idiopathic Parkinsons disease (PD) is poorly defined but environmental aggressions may be relevant. Here, we report a new model of PD in mice, based on chronic inoculation with neurotoxins in the nasal cavity, which is a natural route of contact with the environment. C57BL/6 mice, submitted to daily intranasal inoculation with MPTP for 30 days, developed motor deficits that correlated with a progressive and severe depletion of striatal dopamine levels, and loss of tyrosine hydroxylase and dopamine transporter staining in substantia nigra and striatum. Moreover, mice intranasally inoculated with MPTP developed strong astrogliosis and microgliosis in substantia nigra and striatum. Consistent with these observations, a role for oxidant aggression was demonstrated by increased levels of Mn‐superoxide dismutase. However, α‐synuclein aggregation was not observed. This new animal model provides a new tool for studying PD symptoms that develop slowly over time, and it may be used to asses risk from environmental neurotoxins.