Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmen G. Palii is active.

Publication


Featured researches published by Carmen G. Palii.


The EMBO Journal | 2010

UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis

Shayesta Seenundun; Shravanti Rampalli; Qi-Cai Liu; Arif Aziz; Carmen G. Palii; SunHwa Hong; Alexandre Blais; Marjorie Brand; Kai Ge; Francis Jeffrey Dilworth

Polycomb (PcG) and Trithorax (TrxG) group proteins act antagonistically to establish tissue‐specific patterns of gene expression. The PcG protein Ezh2 facilitates repression by catalysing histone H3‐Lys27 trimethylation (H3K27me3). For expression, H3K27me3 marks are removed and replaced by TrxG protein catalysed histone H3‐Lys4 trimethylation (H3K4me3). Although H3K27 demethylases have been identified, the mechanism by which these enzymes are targeted to specific genomic regions to remove H3K27me3 marks has not been established. Here, we demonstrate a two‐step mechanism for UTX‐mediated demethylation at muscle‐specific genes during myogenesis. Although the transactivator Six4 initially recruits UTX to the regulatory region of muscle genes, the resulting loss of H3K27me3 marks is limited to the region upstream of the transcriptional start site. Removal of the repressive H3K27me3 mark within the coding region then requires RNA Polymerase II (Pol II) elongation. Interestingly, blocking Pol II elongation on transcribed genes leads to increased H3K27me3 within the coding region, and formation of bivalent (H3K27me3/H3K4me3) chromatin domains. Thus, removal of repressive H3K27me3 marks by UTX occurs through targeted recruitment followed by spreading across the gene.


The EMBO Journal | 2011

Differential genomic targeting of the transcription factor TAL1 in alternate haematopoietic lineages

Carmen G. Palii; Carolina Perez-Iratxeta; Zizhen Yao; Yi Cao; Fengtao Dai; Jerry Davison; Harold Atkins; David S. Allan; F. Jeffrey Dilworth; Robert Gentleman; Stephen J. Tapscott; Marjorie Brand

TAL1/SCL is a master regulator of haematopoiesis whose expression promotes opposite outcomes depending on the cell type: differentiation in the erythroid lineage or oncogenesis in the T‐cell lineage. Here, we used a combination of ChIP sequencing and gene expression profiling to compare the function of TAL1 in normal erythroid and leukaemic T cells. Analysis of the genome‐wide binding properties of TAL1 in these two haematopoietic lineages revealed new insight into the mechanism by which transcription factors select their binding sites in alternate lineages. Our study shows limited overlap in the TAL1‐binding profile between the two cell types with an unexpected preference for ETS and RUNX motifs adjacent to E‐boxes in the T‐cell lineage. Furthermore, we show that TAL1 interacts with RUNX1 and ETS1, and that these transcription factors are critically required for TAL1 binding to genes that modulate T‐cell differentiation. Thus, our findings highlight a critical role of the cellular environment in modulating transcription factor binding, and provide insight into the mechanism by which TAL1 inhibits differentiation leading to oncogenesis in the T‐cell lineage.


Genes & Development | 2013

Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation

Soji Sebastian; Hervé Faralli; Zizhen Yao; Patricia Rakopoulos; Carmen G. Palii; Yi Cao; Kulwant Singh; Qi Cai Liu; Alphonse Chu; Arif Aziz; Marjorie Brand; Stephen J. Tapscott; F. Jeffrey Dilworth

Alternate splicing contributes extensively to cellular complexity by generating protein isoforms with divergent functions. However, the role of alternate isoforms in development remains poorly understood. Mef2 transcription factors are essential transducers of cell signaling that modulate differentiation of many cell types. Among Mef2 family members, Mef2D is unique, as it undergoes tissue-specific splicing to generate a muscle-specific isoform. Since the ubiquitously expressed (Mef2Dα1) and muscle-specific (Mef2Dα2) isoforms of Mef2D are both expressed in muscle, we examined the relative contribution of each Mef2D isoform to differentiation. Using both in vitro and in vivo models, we demonstrate that Mef2D isoforms act antagonistically to modulate differentiation. While chromatin immunoprecipitation (ChIP) sequencing analysis shows that the Mef2D isoforms bind an overlapping set of genes, only Mef2Dα2 activates late muscle transcription. Mechanistically, the differential ability of Mef2D isoforms to activate transcription depends on their susceptibility to phosphorylation by protein kinase A (PKA). Phosphorylation of Mef2Dα1 by PKA provokes its association with corepressors. Conversely, exon switching allows Mef2Dα2 to escape this inhibitory phosphorylation, permitting recruitment of Ash2L for transactivation of muscle genes. Thus, our results reveal a novel mechanism in which a tissue-specific alternate splicing event has evolved that permits a ubiquitously expressed transcription factor to escape inhibitory signaling for temporal regulation of gene expression.


Genes & Development | 2016

UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia

Aissa Benyoucef; Carmen G. Palii; Chaochen Wang; Christopher J. Porter; Alphonse Chu; Fengtao Dai; Véronique Tremblay; Patricia Rakopoulos; Kulwant Singh; Suming Huang; Françoise Pflumio; Josée Hébert; Jean-François Couture; Theodore J. Perkins; Kai Ge; F. Jeffrey Dilworth; Marjorie Brand

T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of hematological tumors composed of distinct subtypes that vary in their genetic abnormalities, gene expression signatures, and prognoses. However, it remains unclear whether T-ALL subtypes differ at the functional level, and, as such, T-ALL treatments are uniformly applied across subtypes, leading to variable responses between patients. Here we reveal the existence of a subtype-specific epigenetic vulnerability in T-ALL by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. Specifically, we identify UTX as a coactivator of TAL1 and show that it acts as a major regulator of the TAL1 leukemic gene expression program. Furthermore, we demonstrate that UTX, previously described as a tumor suppressor in T-ALL, is in fact a pro-oncogenic cofactor essential for leukemia maintenance in TAL1-positive (but not TAL1-negative) T-ALL. Exploiting this subtype-specific epigenetic vulnerability, we propose a novel therapeutic approach based on UTX inhibition through in vivo administration of an H3K27 demethylase inhibitor that efficiently kills TAL1-positive primary human leukemia. These findings provide the first opportunity to develop personalized epigenetic therapy for T-ALL patients.


FEBS Journal | 2015

Epigenetic regulation of endothelial‐cell‐mediated vascular repair

Sylvain Fraineau; Carmen G. Palii; David S. Allan; Marjorie Brand

Maintenance of vascular integrity is essential for the prevention of vascular disease and for recovery following cardiovascular, cerebrovascular and peripheral vascular events including limb ischemia, heart attack and stroke. Endothelial stem/progenitor cells have recently gained considerable interest due to their potential use in stem cell therapies to mediate revascularization after ischemic injury. Therefore, there is an urgent need to understand fundamental mechanisms regulating vascular repair in specific cell types to develop new beneficial therapeutic interventions. In this review, we highlight recent studies demonstrating that epigenetic mechanisms (including post‐translational modifications of DNA and histones as well as non‐coding RNA‐mediated processes) play essential roles in the regulation of endothelial stem/progenitor cell functions through modifying chromatin structure. Furthermore, we discuss the potential of using small molecules that modulate the activities of epigenetic enzymes to enhance the vascular repair function of endothelial cells and offer insight on potential strategies that may accelerate clinical applications.


Journal of Clinical Investigation | 2016

UTX demethylase activity is required for satellite cell–mediated muscle regeneration

Hervé Faralli; Chaochen Wang; Kiran Nakka; Aissa Benyoucef; Soji Sebastian; Lenan Zhuang; Alphonse Chu; Carmen G. Palii; Chengyu Liu; Brendan Camellato; Marjorie Brand; Kai Ge; F. Jeffrey Dilworth

The X chromosome-encoded histone demethylase UTX (also known as KDM6A) mediates removal of repressive trimethylation of histone H3 lysine 27 (H3K27me3) to establish transcriptionally permissive chromatin. Loss of UTX in female mice is embryonic lethal. Unexpectedly, male UTX-null mice escape embryonic lethality due to expression of UTY, a paralog that lacks H3K27 demethylase activity, suggesting an enzyme-independent role for UTX in development and thereby challenging the need for active H3K27 demethylation in vivo. However, the requirement for active H3K27 demethylation in stem cell-mediated tissue regeneration remains untested. Here, we employed an inducible mouse KO that specifically ablates Utx in satellite cells (SCs) and demonstrated that active H3K27 demethylation is necessary for muscle regeneration. Loss of UTX in SCs blocked myofiber regeneration in both male and female mice. Furthermore, we demonstrated that UTX mediates muscle regeneration through its H3K27 demethylase activity, as loss of demethylase activity either by chemical inhibition or knock-in of demethylase-dead UTX resulted in defective muscle repair. Mechanistically, dissection of the muscle regenerative process revealed that the demethylase activity of UTX is required for expression of the transcription factor myogenin, which in turn drives differentiation of muscle progenitors. Thus, we have identified a critical role for the enzymatic activity of UTX in activating muscle-specific gene expression during myofiber regeneration and have revealed a physiological role for active H3K27 demethylation in vivo.


Journal of Visualized Experiments | 2011

Lentiviral-mediated Knockdown During Ex Vivo Erythropoiesis of Human Hematopoietic Stem Cells

Carmen G. Palii; Roya Pasha; Marjorie Brand

Erythropoiesis is a commonly used model system to study cell differentiation. During erythropoiesis, pluripotent adult human hematopoietic stem cells (HSCs) differentiate into oligopotent progenitors, committed precursors and mature red blood cells. This process is regulated for a large part at the level of gene expression, whereby specific transcription factors activate lineage-specific genes while concomitantly repressing genes that are specific to other cell types. Studies on transcription factors regulating erythropoiesis are often performed using human and murine cell lines that represent, to some extent, erythroid cells at given stages of differentiation. However transformed cell lines can only partially mimic erythroid cells and most importantly they do not allow one to comprehensibly study the dynamic changes that occur as cells progress through many stages towards their final erythroid fate. Therefore, a current challenge remains the development of a protocol to obtain relatively homogenous populations of primary HSCs and erythroid cells at various stages of differentiation in quantities that are sufficient to perform genomics and proteomics experiments. Here we describe an ex vivo cell culture protocol to induce erythroid differentiation from human hematopoietic stem/progenitor cells that have been isolated from either cord blood, bone marrow, or adult peripheral blood mobilized with G-CSF (leukapheresis). This culture system, initially developed by the Douay laboratory, uses cytokines and co-culture on mesenchymal cells to mimic the bone marrow microenvironment. Using this ex vivo differentiation protocol, we observe a strong amplification of erythroid progenitors, an induction of differentiation exclusively towards the erythroid lineage and a complete maturation to the stage of enucleated red blood cells. Thus, this system provides an opportunity to study the molecular mechanism of transcriptional regulation as hematopoietic stem cells progress along the erythroid lineage. Studying erythropoiesis at the transcriptional level also requires the ability to over-express or knockdown specific factors in primary erythroid cells. For this purpose, we use a lentivirus-mediated gene delivery system that allows for the efficient infection of both dividing and non-dividing cells. Here we show that we are able to efficiently knockdown the transcription factor TAL1 in primary human erythroid cells. In addition, GFP expression demonstrates an efficiency of lentiviral infection close to 90%. Thus, our protocol provides a highly useful system for characterization of the regulatory network of transcription factors that control erythropoiesis.


Proceedings of SPIE | 2017

Learning-based interactive segmentation using the maximum mean cycle weight formalism

Sharmin Nilufar; D. S. Wang; J. Girgis; Carmen G. Palii; D. Yang; A. Blais; M. Brand; Doina Precup; Theodore J. Perkins

The maximum mean cycle weight (MMCW) segmentation framework is a graph-based alternative to approaches such as GraphCut or Markov Random Fields. It offers time- and space-efficient computation and guaranteed optimality. However, unlike GraphCut or Markov Random Fields, MMCW does not seek to segment the entire image, but rather to find the single best object within the image, according to an objective function encoded by edge weights. Its focus on a single, best object makes MMCW attractive to interactive segmentation settings, where the user indicates which objects are to be segmented. However, a provably correct way of performing interactive segmentation using the MMCW framework has never been established. Further, the question of how to develop a good objective function based on user-provided information has never been addressed. Here, we propose a three-component objective function specifically designed for use with interactive MMCW segmentation. Two of those components, representing object boundary and object interior information, can be learned from a modest amount of user-labelled data, but in a way unique to the MMCW framework. The third component allows us to extend the MMCW framework to the situation of interactive segmentation. Specifically, we show that an appropriate weighted combination of the three components guarantees that the object produced by MMCW segmentation will enclose user-specified pixels that can be chosen interactively. The component weights can either be computed a priori based on image characteristics, or online via an adaptive reweighting scheme. We demonstrate the success of the approach on several microscope image segmentation problems.


BMC Biotechnology | 2013

A method for cell type marker discovery by high-throughput gene expression analysis of mixed cell populations

Miguel A. Andrade-Navarro; Femina Kanji; Carmen G. Palii; Marjorie Brand; Harold Atkins; Carol Perez-Iratxeta

BackgroundGene transcripts specifically expressed in a particular cell type (cell-type specific gene markers) are useful for its detection and isolation from a tissue or other cell mixtures. However, finding informative marker genes can be problematic when working with a poorly characterized cell type, as markers can only be unequivocally determined once the cell type has been isolated. We propose a method that could identify marker genes of an uncharacterized cell type within a mixed cell population, provided that the proportion of the cell type of interest in the mixture can be estimated by some indirect method, such as a functional assay.ResultsWe show that cell-type specific gene markers can be identified from the global gene expression of several cell mixtures that contain the cell type of interest in a known proportion by their high correlation to the concentration of the corresponding cell type across the mixtures.ConclusionsGenes detected using this high-throughput strategy would be candidate markers that may be useful in detecting or purifying a cell type from a particular biological context. We present an experimental proof-of-concept of this method using cell mixtures of various well-characterized hematopoietic cell types, and we evaluate the performance of the method in a benchmark that explores the requirements and range of validity of the approach.


Cell Stem Cell | 2014

Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.

Carmen G. Palii; Branka Vulesevic; Sylvain Fraineau; Erinija Pranckeviciene; Alexander J. Griffith; Alphonse Chu; Hervé Faralli; Yuhua Li; Brian McNeill; Jie Sun; Theodore J. Perkins; F. Jeffrey Dilworth; Carol Perez-Iratxeta; Erik J. Suuronen; David S. Allan; Marjorie Brand

Collaboration


Dive into the Carmen G. Palii's collaboration.

Top Co-Authors

Avatar

Marjorie Brand

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodore J. Perkins

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Jeffrey Dilworth

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kai Ge

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Arif Aziz

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Fengtao Dai

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hervé Faralli

Ottawa Hospital Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge