Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmen J. Booth is active.

Publication


Featured researches published by Carmen J. Booth.


Cell | 2011

NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis

Eran Elinav; Till Strowig; Andrew L. Kau; Jorge Henao-Mejia; Christoph A. Thaiss; Carmen J. Booth; David R. Peaper; John Bertin; Stephanie C. Eisenbarth; Jeffrey I. Gordon; Richard A. Flavell

Inflammasomes are multiprotein complexes that function as sensors of endogenous or exogenous damage-associated molecular patterns. Here, we show that deficiency of NLRP6 in mouse colonic epithelial cells results in reduced IL-18 levels and altered fecal microbiota characterized by expanded representation of the bacterial phyla Bacteroidetes (Prevotellaceae) and TM7. NLRP6 inflammasome-deficient mice were characterized by spontaneous intestinal hyperplasia, inflammatory cell recruitment, and exacerbation of chemical colitis induced by exposure to dextran sodium sulfate (DSS). Cross-fostering and cohousing experiments revealed that the colitogenic activity of this microbiota is transferable to neonatal or adult wild-type mice, leading to exacerbation of DSS colitis via induction of the cytokine, CCL5. Antibiotic treatment and electron microscopy studies further supported the role of Prevotellaceae as a key representative of this microbiota-associated phenotype. Altogether, perturbations in this inflammasome pathway, including NLRP6, ASC, caspase-1, and IL-18, may constitute a predisposing or initiating event in some cases of human IBD.


Nature Immunology | 2009

A protective function for interleukin 17A in T cell–mediated intestinal inflammation

William O'Connor; Masahito Kamanaka; Carmen J. Booth; Terrence Town; Susumu Nakae; Yoichiro Iwakura; Jay K. Kolls; Richard A. Flavell

Interleukin 23 (IL-23) and IL-17 have been linked to the pathogenesis of several chronic inflammatory disorders, including inflammatory bowel disease. Yet as an important function for IL-23 is emerging, the function of IL-17 in inflammatory bowel disease remains unclear. Here we demonstrate IL-17A-mediated protection in the CD45RBhi transfer model of colitis. An accelerated wasting disease elicited by T cells deficient in IL-17A correlated with higher expression of genes encoding T helper type 1–type cytokines in colon tissue. IL-17A also modulated T helper type 1 polarization in vitro. Furthermore, T cells deficient in the IL-17 receptor elicited an accelerated, aggressive wasting disease relative to that elicited by wild-type T cells in recipient mice. Our data demonstrate a protective function for IL-17 and identify T cells as not only the source but also a target of IL-17 in vivo.


Immunity | 2011

Th17 Cells Express Interleukin-10 Receptor and Are Controlled by Foxp3− and Foxp3+ Regulatory CD4+ T Cells in an Interleukin-10-Dependent Manner

Samuel Huber; Nicola Gagliani; Enric Esplugues; William O'Connor; Francis J. Huber; Ashutosh Chaudhry; Masahito Kamanaka; Yasushi Kobayashi; Carmen J. Booth; Alexander Y. Rudensky; Maria Grazia Roncarolo; Manuela Battaglia; Richard A. Flavell

T helper 17 (Th17) cells are important for host defense against extracellular microorganisms. However, they are also implicated in autoimmune and chronic inflammatory diseases, and as such need to be tightly regulated. The mechanisms that directly control committed pathogenic Th17 cells in vivo remain unclear. We showed here that IL-17A-producing CD4+ T cells expressed interleukin-10 receptor α (IL-10Rα) in vivo. Importantly, T cell-specific blockade of IL-10 signaling led to a selective increase of IL-17A+IFN-γ⁻ (Th17) and IL-17A+IFN-γ+ (Th17+Th1) CD4+ T cells during intestinal inflammation in the small intestine. CD4+Foxp3⁻ IL-10-producing (Tr1) cells and CD4+Foxp3+ regulatory (Treg) cells were able to control Th17 and Th17+Th1 cells in an IL-10-dependent manner in vivo. Lastly, IL-10 treatment of mice with established colitis decreased Th17 and Th17+Th1 cell frequencies via direct signaling in T cells. Thus, IL-10 signaling directly suppresses Th17 and Th17+Th1 cells.


Nature | 2012

IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine

Samuel Huber; Nicola Gagliani; Lauren A. Zenewicz; Francis J. Huber; Lidia Bosurgi; Bo Hu; Matija Hedl; Wei Zhang; William O’Connor; Andrew J. Murphy; David M. Valenzuela; George D. Yancopoulos; Carmen J. Booth; Judy H. Cho; Wenjun Ouyang; Clara Abraham; Richard A. Flavell

Chronic mucosal inflammation and tissue damage predisposes patients to the development of colorectal cancer. This association could be explained by the hypothesis that the same factors and pathways important for wound healing also promote tumorigenesis. A sensor of tissue damage should induce these factors to promote tissue repair and regulate their action to prevent development of cancer. Interleukin 22 (IL-22), a cytokine of the IL-10 superfamily, has an important role in colonic epithelial cell repair, and its levels are increased in the blood and intestine of inflammatory bowel disease patients. This cytokine can be neutralized by the soluble IL-22 receptor, known as the IL-22 binding protein (IL-22BP, also known as IL22RA2); however, the significance of endogenous IL-22BP in vivo and the pathways that regulate this receptor are unknown. Here we describe that IL-22BP has a crucial role in controlling tumorigenesis and epithelial cell proliferation in the colon. IL-22BP is highly expressed by dendritic cells in the colon in steady-state conditions. Sensing of intestinal tissue damage via the NLRP3 or NLRP6 inflammasomes led to an IL-18-dependent downregulation of IL-22BP, thereby increasing the ratio of IL-22/IL-22BP. IL-22, which is induced during intestinal tissue damage, exerted protective properties during the peak of damage, but promoted tumour development if uncontrolled during the recovery phase. Thus, the IL-22–IL-22BP axis critically regulates intestinal tissue repair and tumorigenesis in the colon.


Nature Materials | 2009

Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA

Kim A. Woodrow; Yen Cu; Carmen J. Booth; Jennifer K. Saucier-Sawyer; Monica J. Wood; W. Mark Saltzman

Vaginal instillation of small-interfering RNA (siRNA) using liposomes has led to silencing of endogenous genes in the genital tract and protected against challenge from infectious disease. Although siRNA lipoplexes are easily formulated, several of the most effective transfection agents available commercially may be toxic to the mucosal epithelia and none are able to provide controlled or sustained release. Here, we demonstrate an alternate approach, using nanoparticles composed entirely of FDA-approved materials. To render these materials effective for gene silencing we developed novel approaches to load them with high amounts of siRNA. A single dose of siRNA-loaded nanoparticles to the mouse female reproductive tract caused efficient and sustained gene silencing. Knockdown of gene expression was observed proximal (in the vaginal lumen) and distal (in the uterine horns) to the site of topical delivery. In addition, nanoparticles penetrated deep into the epithelial tissue. This is the first report demonstrating that biodegradable polymer nanoparticles are effective delivery vehicles for siRNA in the vaginal mucosa.


Nature Genetics | 2006

Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule.

Maria D. Lalioti; Junhui Zhang; Heather M. Volkman; Kristopher T. Kahle; Kristin E Hoffmann; Hakan R. Toka; Carol Nelson-Williams; David H. Ellison; Richard A. Flavell; Carmen J. Booth; Yin Lu; David S. Geller; Richard P. Lifton

The mechanisms that govern homeostasis of complex systems have been elusive but can be illuminated by mutations that disrupt system behavior. Mutations in the gene encoding the kinase WNK4 cause pseudohypoaldosteronism type II (PHAII), a syndrome featuring hypertension and hyperkalemia. We show that physiology in mice transgenic for genomic segments harboring wild-type (TgWnk4WT) or PHAII mutant (TgWnk4PHAII) Wnk4 is changed in opposite directions: TgWnk4PHAII mice have higher blood pressure, hyperkalemia, hypercalciuria and marked hyperplasia of the distal convoluted tubule (DCT), whereas the opposite is true in TgWnk4WT mice. Genetic deficiency for the Na-Cl cotransporter of the DCT (NCC) reverses phenotypes seen in TgWnk4PHAII mice, demonstrating that the effects of the PHAII mutation are due to altered NCC activity. These findings establish that Wnk4 is a molecular switch that regulates the balance between NaCl reabsorption and K+ secretion by altering the mass and function of the DCT through its effect on NCC.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma

Imran Babar; Chao Cheng; Carmen J. Booth; Xianping Liang; Joanne B. Weidhaas; Saltzman Wm; Frank J. Slack

MicroRNA-155 (miR-155) is an oncogenic microRNA that regulates several pathways involved in cell division and immunoregulation. It is overexpressed in numerous cancers, is often correlated with poor prognosis, and is thus a key target for future therapies. In this work we show that overexpression of miR-155 in lymphoid tissues results in disseminated lymphoma characterized by a clonal, transplantable pre-B-cell population of neoplastic lymphocytes. Withdrawal of miR-155 in mice with established disease results in rapid regression of lymphadenopathy, in part because of apoptosis of the malignant lymphocytes, demonstrating that these tumors are dependent on miR-155 expression. We show that systemic delivery of antisense peptide nucleic acids encapsulated in unique polymer nanoparticles inhibits miR-155 and slows the growth of these “addicted” pre-B-cell tumors in vivo, suggesting a promising therapeutic option for lymphoma/leukemia.


Science | 2012

GBP5 Promotes NLRP3 Inflammasome Assembly and Immunity in Mammals

Avinash R. Shenoy; David A. Wellington; Pradeep Kumar; Hilina Kassa; Carmen J. Booth; Peter Cresswell; John D. MacMicking

Generating Inflammasomes Inflammasomes are large, multiprotein complexes that assemble in response to infection that are also involved in the pathogenesis of a variety of other diseases, including type 2 diabetes and atherosclerosis. The assembly of the inflammasome triggers an inflammatory cascade that results in the activation of caspase-1 and production of the cytokines interleukin-1 and -18. Very little, however, is known about the specific signals that trigger inflammasome assembly. Shenoy et al. (p. 481, published online 29 March; see the Perspective by Caffrey and Fitzgerald) now show that guanylate binding protein 5 (GBP5) promotes the assembly of the NLRP3-containing inflammasome in response to certain activation signals, such as pathogenic bacteria and adenosine triphosphate, but not others, like crystalline stimuli. Mice deficient in GBP5 exhibited impaired caspase-1 activation and production of cytokines. NLRP3 inflammasome–dependent responses to pathogenic bacteria and inflammatory stimuli were also impaired in mice lacking GBP5. A human protein activates the assembly of a cellular complex that detects signs of infection. Inflammasomes are sensory complexes that alert the immune system to the presence of infection or tissue damage. These complexes assemble NLR (nucleotide binding and oligomerization, leucine-rich repeat) or ALR (absent in melanoma 2–like receptor) proteins to activate caspase-1 cleavage and interleukin (IL)–1β/IL-18 secretion. Here, we identified a non-NLR/ALR human protein that stimulates inflammasome assembly: guanylate binding protein 5 (GBP5). GBP5 promoted selective NLRP3 inflammasome responses to pathogenic bacteria and soluble but not crystalline inflammasome priming agents. Generation of Gbp5–/– mice revealed pronounced caspase-1 and IL-1β/IL-18 cleavage defects in vitro and impaired host defense and Nlrp3-dependent inflammatory responses in vivo. Thus, GBP5 serves as a unique rheostat for NLRP3 inflammasome activation and extends our understanding of the inflammasome complex beyond its core machinery.


Nanomedicine: Nanotechnology, Biology and Medicine | 2009

PEGylated PLGA nanoparticles for the improved delivery of doxorubicin

Jason Park; Peter Fong; Jing Lu; Kerry S. Russell; Carmen J. Booth; W. Mark Saltzman; Tarek M. Fahmy

UNLABELLED We hypothesize that the efficacy of doxorubicin (DOX) can be maximized and dose-limiting cardiotoxicity minimized by controlled release from PEGylated nanoparticles. To test this hypothesis, a unique surface modification technique was used to create PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating DOX. An avidin-biotin coupling system was used to control poly(ethylene glycol) conjugation to the surface of PLGA nanoparticles, of diameter approximately 130 nm, loaded with DOX to 5% (wt/wt). Encapsulation in nanoparticles did not compromise the efficacy of DOX; drug-loaded nanoparticles were found to be at least as potent as free DOX against A20 murine B-cell lymphoma cells in culture and of comparable efficacy against subcutaneously implanted tumors. Cardiotoxicity in mice as measured by echocardiography, serum creatine phosphokinase (CPK), and histopathology was reduced for DOX-loaded nanoparticles as compared with free DOX. Administration of 18 mg/kg of free DOX induced a sevenfold increase in CPK levels and significant decreases in left ventricular fractional shortening over control animals, whereas nanoparticle-encapsulated DOX produced none of these pathological changes. FROM THE CLINICAL EDITOR The efficacy of doxorubicin (DOX) may be maximized and dose-limiting cardiotoxicity minimized by controlled release from PEGylated nanoparticles. Administration of 18 mg/kg of free DOX induced a sevenfold increase in CPK levels and significant decreases in left ventricular fractional shortening in mice, whereas nanoparticle-encapsulated DOX produced none of these pathological changes.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4

Bo Hu; Eran Elinav; Samuel Huber; Carmen J. Booth; Till Strowig; Chengcheng Jin; Stephanie C. Eisenbarth; Richard A. Flavell

Chronic inflammation is a known risk factor for tumorigenesis, yet the precise mechanism of this association is currently unknown. The inflammasome, a multiprotein complex formed by NOD-like receptor (NLR) family members, has recently been shown to orchestrate multiple innate and adaptive immune responses, yet its potential role in inflammation-induced cancer has been little studied. Using the azoxymethane and dextran sodium sulfate colitis-associated colorectal cancer model, we show that caspase-1–deficient (Casp1−/−) mice have enhanced tumor formation. Surprisingly, the role of caspase-1 in tumorigenesis was not through regulation of colonic inflammation, but rather through regulation of colonic epithelial cell proliferation and apoptosis. Consequently, caspase-1–deficient mice demonstrate increased colonic epithelial cell proliferation in early stages of injury-induced tumor formation and reduced apoptosis in advanced tumors. We suggest a model in which the NLRC4 inflammasome is central to colonic inflammation-induced tumor formation through regulation of epithelial cell response to injury.

Collaboration


Dive into the Carmen J. Booth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge