Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmen Loquai is active.

Publication


Featured researches published by Carmen Loquai.


Science | 2015

Genomic correlates of response to CTLA-4 blockade in metastatic melanoma

Eliezer M. Van Allen; Diana Miao; Bastian Schilling; Sachet A. Shukla; Christian U. Blank; Lisa Zimmer; Antje Sucker; Uwe Hillen; Marnix H. Geukes Foppen; Simone M. Goldinger; Jochen Utikal; Jessica C. Hassel; Benjamin Weide; Katharina C. Kaehler; Carmen Loquai; Peter Mohr; Ralf Gutzmer; Reinhard Dummer; Stacey Gabriel; Catherine J. Wu; Dirk Schadendorf; Levi A. Garraway

Is cancer immunotherapy a private affair? Immune checkpoint blockade, a relatively new cancer treatment, substantially extends the survival of a subset of patients. Previous work has shown that patients whose tumors harbor the largest number of mutations—and thus produce a large number of “neoantigens” recognized as foreign by the immune system—are most likely to benefit. Expanding on these earlier studies, Van Allen et al. studied over 100 patients with melanoma and found a similar correlation (see the Perspective by Gubin and Schreiber). There was no evidence, however, that specific neoantigen sequences were shared by patients who responded. Science, this issue p. 207, see also p. 158 Melanoma patients who respond to immunotherapy do not appear to share common tumor neoantigens. [Also see Perspective by Gubin and Schreiber ] Monoclonal antibodies directed against cytotoxic T lymphocyte–associated antigen-4 (CTLA-4), such as ipilimumab, yield considerable clinical benefit for patients with metastatic melanoma by inhibiting immune checkpoint activity, but clinical predictors of response to these therapies remain incompletely characterized. To investigate the roles of tumor-specific neoantigens and alterations in the tumor microenvironment in the response to ipilimumab, we analyzed whole exomes from pretreatment melanoma tumor biopsies and matching germline tissue samples from 110 patients. For 40 of these patients, we also obtained and analyzed transcriptome data from the pretreatment tumor samples. Overall mutational load, neoantigen load, and expression of cytolytic markers in the immune microenvironment were significantly associated with clinical benefit. However, no recurrent neoantigen peptide sequences predicted responder patient populations. Thus, detailed integrated molecular characterization of large patient cohorts may be needed to identify robust determinants of response and resistance to immune checkpoint inhibitors.


PLOS ONE | 2013

The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network

Caroline J. Voskens; Simone M. Goldinger; Carmen Loquai; Caroline Robert; Katharina C. Kaehler; Carola Berking; Tanja Bergmann; Clemens L. Bockmeyer; Thomas K. Eigentler; Michael Fluck; Claus Garbe; Ralf Gutzmer; Stephan Grabbe; Axel Hauschild; Rüdiger Hein; Gheorghe Hundorfean; Armin Justich; Ullrich Keller; Christina Klein; C. Mateus; Peter Mohr; Sylvie Paetzold; Imke Satzger; Dirk Schadendorf; Marc Schlaeppi; Gerold Schuler; Beatrice Schuler-Thurner; Uwe Trefzer; Jens Ulrich; Julia Vaubel

Background Ipilimumab, a cytotoxic T-lymphocyte antigen-4 (CTLA-4) blocking antibody, has been approved for the treatment of metastatic melanoma and induces adverse events (AE) in up to 64% of patients. Treatment algorithms for the management of common ipilimumab-induced AEs have lead to a reduction of morbidity, e.g. due to bowel perforations. However, the spectrum of less common AEs is expanding as ipilimumab is increasingly applied. Stringent recognition and management of AEs will reduce drug-induced morbidity and costs, and thus, positively impact the cost-benefit ratio of the drug. To facilitate timely identification and adequate management data on rare AEs were analyzed at 19 skin cancer centers. Methods and Findings Patient files (n = 752) were screened for rare ipilimumab-associated AEs. A total of 120 AEs, some of which were life-threatening or even fatal, were reported and summarized by organ system describing the most instructive cases in detail. Previously unreported AEs like drug rash with eosinophilia and systemic symptoms (DRESS), granulomatous inflammation of the central nervous system, and aseptic meningitis, were documented. Obstacles included patientś delay in reporting symptoms and the differentiation of steroid-induced from ipilimumab-induced AEs under steroid treatment. Importantly, response rate was high in this patient population with tumor regression in 30.9% and a tumor control rate of 61.8% in stage IV melanoma patients despite the fact that some patients received only two of four recommended ipilimumab infusions. This suggests that ipilimumab-induced antitumor responses can have an early onset and that severe autoimmune reactions may reflect overtreatment. Conclusion The wide spectrum of ipilimumab-induced AEs demands doctor and patient awareness to reduce morbidity and treatment costs and true ipilimumab success is dictated by both objective tumor responses and controlling severe side effects.


Nature | 2016

Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy

Lena M. Kranz; Mustafa Diken; Heinrich Haas; Sebastian Kreiter; Carmen Loquai; Kerstin C. Reuter; Martin Meng; Daniel Fritz; Fulvia Vascotto; Hossam Hefesha; Christian Grunwitz; Mathias Vormehr; Yves Hüsemann; Abderraouf Selmi; Andreas Kuhn; Janina Buck; Evelyna Derhovanessian; Richard Rae; Sebastian Attig; Jan Diekmann; Robert A. Jabulowsky; Sandra Heesch; Jessica C. Hassel; Peter Langguth; Stephan Grabbe; Christoph Huber; Özlem Türeci; Ugur Sahin

Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.


Nature | 2017

Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer

Ugur Sahin; Evelyna Derhovanessian; Matthias Miller; Björn-Philipp Kloke; Petra Simon; Martin Löwer; Valesca Bukur; Arbel D. Tadmor; Ulrich Luxemburger; Barbara Schrörs; Tana Omokoko; Mathias Vormehr; Christian Albrecht; Anna Paruzynski; Andreas Kuhn; Janina Buck; Sandra Heesch; Katharina Schreeb; Felicitas Müller; Inga Ortseifer; Isabel Vogler; Eva Godehardt; Sebastian Attig; Richard Rae; Andrea Breitkreuz; Claudia Tolliver; Martin Suchan; Goran Martic; Alexander Hohberger; Patrick Sorn

T cells directed against mutant neo-epitopes drive cancer immunity. However, spontaneous immune recognition of mutations is inefficient. We recently introduced the concept of individualized mutanome vaccines and implemented an RNA-based poly-neo-epitope approach to mobilize immunity against a spectrum of cancer mutations. Here we report the first-in-human application of this concept in melanoma. We set up a process comprising comprehensive identification of individual mutations, computational prediction of neo-epitopes, and design and manufacturing of a vaccine unique for each patient. All patients developed T cell responses against multiple vaccine neo-epitopes at up to high single-digit percentages. Vaccine-induced T cell infiltration and neo-epitope-specific killing of autologous tumour cells were shown in post-vaccination resected metastases from two patients. The cumulative rate of metastatic events was highly significantly reduced after the start of vaccination, resulting in a sustained progression-free survival. Two of the five patients with metastatic disease experienced vaccine-related objective responses. One of these patients had a late relapse owing to outgrowth of β2-microglobulin-deficient melanoma cells as an acquired resistance mechanism. A third patient developed a complete response to vaccination in combination with PD-1 blockade therapy. Our study demonstrates that individual mutations can be exploited, thereby opening a path to personalized immunotherapy for patients with cancer.


Journal Der Deutschen Dermatologischen Gesellschaft | 2013

Malignant Melanoma S3-Guideline "Diagnosis, Therapy and Follow-up of Melanoma"

Annette Pflugfelder; Corinna Kochs; Andreas Blum; Marcus Capellaro; Christina Czeschik; Therese Dettenborn; Dorothee Dill; Edgar Dippel; Thomas K. Eigentler; Petra Feyer; Markus Follmann; Bernhard Frerich; Maria-Katharina Ganten; Jan Gärtner; Ralf Gutzmer; Jessica Hassel; Axel Hauschild; Peter Hohenberger; Jutta Hübner; Martin Kaatz; Ulrich R. Kleeberg; Oliver Kölbl; Rolf-Dieter Kortmann; Albrecht Krause-Bergmann; Peter Kurschat; Ulrike Leiter; Hartmut Link; Carmen Loquai; Christoph Löser; Andreas Mackensen

This first German evidence-based guideline for cutaneous melanoma was developed under the auspices of the German Dermatological Society (DDG) and the Dermatologic Cooperative Oncology Group (DeCOG) and funded by the German Guideline Program in Oncology. The recommendations are based on a systematic literature search, and on the consensus of 32 medical societies, working groups and patient representatives. This guideline contains recommendations concerning diagnosis, therapy and follow-up of melanoma. The diagnosis of primary melanoma based on clinical features and dermoscopic criteria. It is confirmed by histopathologic examination after complete excision with a small margin. For the staging of melanoma, the AJCC classification of 2009 is used. The definitive excision margins are 0.5 cm for in situ melanomas, 1 cm for melanomas with up to 2 mm tumor thickness and 2 cm for thicker melanomas, they are reached in a secondary excision. From 1 mm tumor thickness, sentinel lymph node biopsy is recommended. For stages II and III, adjuvant therapy with interferon-alpha should be considered after careful analysis of the benefits and possible risks. In the stage of locoregional metastasis surgical treatment with complete lymphadenectomy is the treatment of choice. In the presence of distant metastasis mutational screening should be performed for BRAF mutation, and eventually for CKIT and NRAS mutations. In the presence of mutations in case of inoperable metastases targeted therapies should be applied. Furthermore, in addition to standard chemotherapies, new immunotherapies such as the CTLA-4 antibody ipilimumab are available. Regular follow-up examinations are recommended for a period of 10 years, with an intensified schedule for the first three years.


European Journal of Cancer | 2016

Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy

Lars Hofmann; Andrea Forschner; Carmen Loquai; Simone M. Goldinger; Lisa Zimmer; Selma Ugurel; Maria I. Schmidgen; Ralf Gutzmer; Jochen Utikal; Daniela Göppner; Jessica C. Hassel; Friedegund Meier; Julia K. Tietze; Ioannis Thomas; Carsten Weishaupt; Martin Leverkus; Renate Wahl; Ursula Dietrich; Claus Garbe; Michael C. Kirchberger; Thomas K. Eigentler; Carola Berking; Anja Gesierich; Angela M. Krackhardt; Dirk Schadendorf; Gerold Schuler; Reinhard Dummer; Lucie Heinzerling

BACKGROUND Anti-programmed cell death receptor-1 (PD-1) antibodies represent an effective treatment option for metastatic melanoma as well as for other cancer entities. They act via blockade of the PD-1 receptor, an inhibitor of the T-cell effector mechanisms that limit immune responses against tumours. As reported for ipilimumab, the anti-PD-1 antibodies pembrolizumab and nivolumab can induce immune-related adverse events (irAEs). These side-effects affect skin, gastrointestinal tract, liver, endocrine system and other organ systems. Since life-threatening and fatal irAEs have been reported, adequate diagnosis and management are essential. METHODS AND FINDINGS In total, 496 patients with metastatic melanoma from 15 skin cancer centers were treated with pembrolizumab or nivolumab; 242 side-effects were described in 138 patients. In 116 of the 138 patients, side-effects affected the skin, gastrointestinal tract, liver, endocrine, and renal system. Rare side-effects included diabetes mellitus, lichen planus, and pancreas insufficiency due to pancreatitis. CONCLUSION Anti-PD1 antibodies can induce a plethora of irAEs. The knowledge of them will allow prompt diagnosis and improve the management resulting in decreased morbidity.


European Journal of Cancer | 2016

Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy

Lisa Zimmer; Simone M. Goldinger; Lars Hofmann; Carmen Loquai; Selma Ugurel; Ioannis Thomas; Maria I. Schmidgen; Ralf Gutzmer; Jochen Utikal; Daniela Göppner; Jessica C. Hassel; Friedegund Meier; Julia K. Tietze; Andrea Forschner; Carsten Weishaupt; Martin Leverkus; Renate Wahl; Ursula Dietrich; Claus Garbe; Michael C. Kirchberger; Thomas K. Eigentler; Carola Berking; Anja Gesierich; Angela M. Krackhardt; Dirk Schadendorf; Gerold Schuler; Reinhard Dummer; Lucie Heinzerling

BACKGROUND Anti-programmed cell death 1 (PD-1) antibodies represent an effective treatment option for metastatic melanoma and other cancer entities. They act via blockade of the PD-1 receptor, an inhibitor of the T-cell effector mechanisms that limit immune responses against tumours. As reported for ipilimumab, the anti-PD-1 antibodies pembrolizumab and nivolumab can induce immune-related adverse events (irAEs). These side-effects can involve skin, gastrointestinal tract, liver, the endocrine system and other organ systems. Since life-threatening and fatal irAEs have been reported, adequate diagnosis and management are essential. METHODS AND FINDINGS In total, 496 patients with metastatic melanoma from 15 skin cancer centres were treated with pembrolizumab or nivolumab. Two hundred forty two side-effects in 138 patients have been analysed. In 77 of the 138 patients side-effects affected the nervous system, respiratory tract, musculoskeletal system, heart, blood and eyes. Not yet reported side-effects such as meningo-(radiculitis), polyradiculitis, cardiac arrhythmia, asystolia, and paresis have been observed. Rare and difficult to manage side-effects such as myasthenia gravis are described in detail. CONCLUSION Anti-PD-1 antibodies can induce a plethora of irAEs. The knowledge of them will allow prompt diagnosis and improve the management resulting in decreased morbidity.


Lancet Oncology | 2015

Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): A multicentre, randomised, double-blind phase 2 trial

Michael R. Migden; Alexander Guminski; Ralf Gutzmer; Luc Dirix; Karl D. Lewis; Patrick Combemale; Robert M. Herd; Ragini R. Kudchadkar; Uwe Trefzer; Sven Gogov; Celine Pallaud; Tingting Yi; Manisha Mone; Martin Kaatz; Carmen Loquai; Alexander J. Stratigos; Hans-Joachim Schulze; Ruth Plummer; Anne Lynn S. Chang; Frank Cornelis; John T. Lear; Dalila Sellami; Reinhard Dummer

BACKGROUND Patients with advanced basal cell carcinoma have limited treatment options. Hedgehog pathway signalling is aberrantly activated in around 95% of tumours. We assessed the antitumour activity of sonidegib, a Hedgehog signalling inhibitor, in patients with advanced basal cell carcinoma. METHODS BOLT is an ongoing multicentre, randomised, double-blind, phase 2 trial. Eligible patients had locally advanced basal cell carcinoma not amenable to curative surgery or radiation or metastatic basal cell carcinoma. Patients were randomised via an automated system in a 1:2 ratio to receive 200 mg or 800 mg oral sonidegib daily, stratified by disease, histological subtype, and geographical region. The primary endpoint was the proportion of patients who achieved an objective response, assessed in the primary efficacy analysis population (patients with fully assessable locally advanced disease and all those with metastatic disease) with data collected up to 6 months after randomisation of the last patient. This trial is registered with ClinicalTrials.gov, number NCT01327053. FINDINGS Between July 20, 2011, and Jan 10, 2013, we enrolled 230 patients, 79 in the 200 mg sonidegib group, and 151 in the 800 mg sonidegib group. Median follow-up was 13·9 months (IQR 10·1-17·3). In the primary efficacy analysis population, 20 (36%, 95% CI 24-50) of 55 patients receiving 200 mg sonidegib and 39 (34%, 25-43) of 116 receiving 800 mg sonidegib achieved an objective response. In the 200 mg sonidegib group, 18 (43%, 95% CI 28-59) patients who achieved an objective response, as assessed by central review, were noted among the 42 with locally advanced basal cell carcinoma and two (15%, 2-45) among the 13 with metastatic disease. In the 800 mg group, 35 (38%, 95% CI 28-48) of 93 patients with locally advanced disease had an objective response, as assessed by central review, as did four (17%, 5-39) of 23 with metastatic disease. Fewer adverse events leading to dose interruptions or reductions (25 [32%] of 79 patients vs 90 [60%] of 150) or treatment discontinuation (17 [22%] vs 54 [36%]) occurred in patients in the 200 mg group than in the 800 mg group. The most common grade 3-4 adverse events were raised creatine kinase (five [6%] in the 200 mg group vs 19 [13%] in the 800 mg group) and lipase concentration (four [5%] vs eight [5%]). Serious adverse events occurred in 11 (14%) of 79 patients in the 200 mg group and 45 (30%) of 150 patients in the 800 mg group. INTERPRETATION The benefit-to-risk profile of 200 mg sonidegib might offer a new treatment option for patients with advanced basal cell carcinoma, a population that is difficult to treat. FUNDING Novartis Pharmaceuticals Corporation.


European Journal of Cancer | 2015

Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms

Douglas B. Johnson; Alexander M. Menzies; Lisa Zimmer; Zeynep Eroglu; Fei Ye; Shilin Zhao; Helen Rizos; Antje Sucker; Richard A. Scolyer; Ralf Gutzmer; Helen Gogas; Richard F. Kefford; John F. Thompson; Jürgen C. Becker; Carola Berking; Friederike Egberts; Carmen Loquai; Simone M. Goldinger; Gulietta M. Pupo; Willy Hugo; Xiangju Kong; Levi A. Garraway; Jeffrey A. Sosman; Antoni Ribas; Roger S. Lo; Dirk Schadendorf

BACKGROUND Acquired resistance to BRAF inhibitors (BRAFi) is a near-universal phenomenon caused by numerous genetic and non-genetic alterations. In this study, we evaluated the spectrum, onset, pattern of progression, and subsequent clinical outcomes associated with specific mechanisms of resistance. METHODS We compiled clinical and genetic data from 100 patients with 132 tissue samples obtained at progression on BRAFi therapy from 3 large, previously published studies of BRAFi resistance. These samples were subjected to whole-exome sequencing and/or polymerase chain reaction-based genetic testing. RESULTS Among 132 samples, putative resistance mechanisms were identified in 58%, including NRAS or KRAS mutations (20%), BRAF splice variants (16%), BRAF(V600E/K) amplifications (13%), MEK1/2 mutations (7%), and non-mitogen-activated protein kinase pathway alterations (11%). Marked heterogeneity was observed within tumors and patients; 18 of 19 patients (95%) with more than one progression biopsy had distinct/unknown drivers of resistance between samples. NRAS mutations were associated with vemurafenib use (p = 0.045) and intracranial metastases (p = 0.036), and MEK1/2 mutations correlated with hepatic progression (p = 0.011). Progression-free survival and overall survival were similar across resistance mechanisms. The median survival after disease progression was 6.9 months, and responses to subsequent BRAF and MEK inhibition were uncommon (2 of 15; 13%). Post-progression outcomes did not correlate with specific acquired BRAFi-resistance mechanisms. CONCLUSIONS This is the first study to systematically characterise the clinical implications of particular acquired BRAFi-resistance mechanisms in patients with BRAF-mutant melanoma largest study to compile the landscape of resistance. Despite marked heterogeneity of resistance mechanisms within patients, NRAS mutations correlated with vemurafenib use and intracranial disease involvement.


Journal of Leukocyte Biology | 2010

Release of IL-12 by dendritic cells activated by TLR ligation is dependent on MyD88 signaling, whereas TRIF signaling is indispensable for TLR synergy

Mathias Krummen; Sandra Balkow; Limei Shen; Stefanie Heinz; Carmen Loquai; Hans Christian Probst; Stephan Grabbe

Recently, it has been shown that certain combinations of TLR ligands act in synergy to induce the release of IL‐12 by DCs. In this study, we sought to define the critical parameters underlying TLR synergy. Our data show that TLR ligands act synergistically if MyD88‐ and TRIF‐dependent ligands are combined. TLR4 uses both of these adaptor molecules, thus activation via TLR4 proved to be a synergistic event on its own. TLR synergy did not affect all aspects of DC activation but enhanced primarily the release of certain cytokines, particularly IL‐12, whereas the expression of costimulatory molecules remained unchanged. Consequently, synergistic activation of DC did not affect their ability to induce T cell proliferation but resulted in TH1‐biased responses in vitro and in vivo. Furthermore, we examined the impact of TLR ligand combinations on primary DC in vitro but observed only modest effects with a combination of CpG + Poly (I:C). However, noticeable synergy in terms of IL‐12 production by DCs was detectable in vivo after systemic administration of CpG + Poly (I:C). Finally, we show that synergy is partially dependent on IFNAR signaling but does not require the release of IFNs to the enviroment, suggesting an autocrine action of type I IFNs.

Collaboration


Dive into the Carmen Loquai's collaboration.

Top Co-Authors

Avatar

Ralf Gutzmer

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Dirk Schadendorf

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claus Garbe

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar

Lisa Zimmer

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Jessica C. Hassel

University Hospital Heidelberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge