Carmen Noelker
University of Bonn
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carmen Noelker.
Drugs | 2010
Richard Dodel; Frauke Neff; Carmen Noelker; Refik Pul; Yansheng Du; Michael Bacher; Wolfgang H. Oertel
Current treatment options for Alzheimer’s disease (AD) exert only a shortlived effect on disease symptoms. Active and passive immunotherapy have both been shown to be effective in clearing plaques, removing β-amyloid (Aβ) and improving behaviour in animal models of AD. Although the first active immunization trial in humans was discontinued because of severe adverse effects, several new approaches are currently being investigated in clinical trials. Recently, commercially available intravenous immunoglobulins (IVIG) have been used in small pilot trials for the treatment of patients with AD, based on the hypothesis that IVIG contains naturally occurring auto-antibodies (nAbs-Aβ) that specifically recognize and block the toxic effects of Ab. Furthermore, these nAbs-Aβ are reduced in AD patients compared with healthy controls, supporting the notion of replacement with IVIG. Beyond the occurrence of nAbs-Aβ, evidence for several other mechanisms associated with IVIG in AD has been reported in preclinical experiments and clinical studies. In 2009, a phase III clinical trial involving more than 360 AD patients was initiated and may provide conclusive evidence for the effect of IVIG as a treatment option for AD in 2011. In this article, we review the current knowledge and scientific rationale for using IVIG in patients with AD and other neurodegenerative disorders.
Neuroscience Letters | 2005
Carmen Noelker; Michael Bacher; Petra Gocke; Xing Wei; Thomas Klockgether; Yansheng Du; Richard Dodel
Parkinsons disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DA) neurons of the substantia nigra pars compacta. 6-Hydroxydopamine (6-OHDA) is specific to dopaminergic neurons in intrastriatal rodent models. It induces neuronal death either via uncoupling mitochondrial oxidative phosphorylation resulting in energy deprivation or alternatively, is associated with its ability to produce hydrogen peroxide, hydroxyl and superoxide radicals. Caffeic acid phenethyl ester (CAPE), an antioxidant flavanoid, has antiviral, anti-inflammatory, antioxidant, and immunomodulatory properties. Recent studies have shown that CAPE has also a neuroprotective effects in ischemia and low potassium-induced neuronal apoptotic models. In cerebellar granule neurons CAPE significantly blocks 6-OHDA mediated cell death (70 microM) in a dose-dependent manner. Furthermore, CAPE was able to modulate the Ca(2+)-induced release of cyctochrome c in isolated liver mitochondria. Caspase-3 activation following 6-OHDA treatment was markedly inhibited in the presence of CAPE. Although the molecular mechanisms associated with CAPEs neuroprotective effects remain to be elucidated in more detail, our results clearly demonstrate a considerable neuroprotective effect of CAPE. Since a mitochondrial insult is a major cause for the degeneration of nigral neurons in PD, we hypothesize that propolis derivatives, in particular CAPE, may have a neuroprotective effect on those cells and may be a promising drug candidate to be taken into in vivo models of PD.
Scientific Reports | 2013
Carmen Noelker; Lydie Morel; Thomas Lescot; Anke Osterloh; Daniel Alvarez-Fischer; Minka Breloer; Carmen Henze; Candan Depboylu; Delphine Skrzydelski; Patrick P. Michel; Richard Dodel; Lixia Lu; Etienne C. Hirsch; Stéphane Hunot; Andreas Hartmann
In mammalians, toll-like receptors (TLR) signal-transduction pathways induce the expression of a variety of immune-response genes, including inflammatory cytokines. It is therefore plausible to assume that TLRs are mediators in glial cells triggering the release of cytokines that ultimately kill DA neurons in the substantia nigra in Parkinson disease (PD). Accordingly, recent data indicate that TLR4 is up-regulated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in a mouse model of PD. Here, we wished to evaluate the role of TLR4 in the acute mouse MPTP model of PD: TLR4-deficient mice and wild-type littermates control mice were used for the acute administration way of MPTP or a corresponding volume of saline. We demonstrate that TLR4-deficient mice are less vulnerable to MPTP intoxication than wild-type mice and display a decreased number of Iba1+ and MHC II+ activated microglial cells after MPTP application, suggesting that the TLR4 pathway is involved in experimental PD.
Neurology | 2013
Daniela Besong-Agbo; Elias Wolf; Frank Jessen; Matthias Oechsner; Eva Hametner; Werner Poewe; Markus Reindl; Wolfgang H. Oertel; Carmen Noelker; Michael Bacher; Richard Dodel
Objective: Biomarkers are required for the diagnosis and monitoring of disease progression in Parkinson disease (PD). To date, most studies have concentrated on α-synuclein (α-Syn), a protein involved in Parkinson disease pathogenesis, as a potential biomarker, with inconsistent outcomes. Recently, naturally occurring autoantibodies against α-Syn (α-Syn-nAbs) have been detected in the serum of patients with PD. They represent a putative diagnostic marker for PD. Methods: We established and validated an ELISA to quantify α-Syn-nAbs in serum samples. We analyzed serum samples from 62 patients with PD, 46 healthy controls (HC), and 42 patients with Alzheimer disease (AD) using this newly established ELISA. Additionally, serum levels of endogenous α-Syn were measured. Results: There was a significant difference in α-Syn-nAbs levels between the investigated groups (p = 0.005; Kruskal-Wallis test). Levels of α-Syn-nAbs were significantly lower in patients with PD compared to HC (p < 0.05; Dunn multiple comparison post hoc test) or patients with AD (p < 0.05). Furthermore, we detected no difference between patients with AD and HC. The sensitivity and specificity of the assay for patients with PD vs HC were 85% and 25%, respectively. The α-Syn-nAbs levels did not correlate with age, Hoehn & Yahr status, or duration of disease. Endogenous α-Syn had no influence on α-Syn-nAbs levels in sera. Conclusions: Using a well-validated assay, we detected reduced α-Syn-nAbs levels in patients with PD compared to patients with AD and HC. The assay did not achieve criteria for use as a diagnostic tool to reliably distinguish PD from HC. Further studies are needed to assess α-Syn-nAbs as a biomarker in PD.
PLOS ONE | 2013
Daniel Alvarez-Fischer; Carmen Noelker; Franca Vulinovic; Anne Grünewald; Caroline Chevarin; Christine Klein; Wolfgang H. Oertel; Etienne C. Hirsch; Patrick P. Michel; Andreas Hartmann
Bee venom has recently been suggested to possess beneficial effects in the treatment of Parkinson disease (PD). For instance, it has been observed that bilateral acupoint stimulation of lower hind limbs with bee venom was protective in the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. In particular, a specific component of bee venom, apamin, has previously been shown to have protective effects on dopaminergic neurons in vitro. However, no information regarding a potential protective action of apamin in animal models of PD is available to date. The specific goals of the present study were to (i) establish that the protective effect of bee venom for dopaminergic neurons is not restricted to acupoint stimulation, but can also be observed using a more conventional mode of administration and to (ii) demonstrate that apamin can mimic the protective effects of a bee venom treatment on dopaminergic neurons. Using the chronic mouse model of MPTP/probenecid, we show that bee venom provides sustained protection in an animal model that mimics the chronic degenerative process of PD. Apamin, however, reproduced these protective effects only partially, suggesting that other components of bee venom enhance the protective action of the peptide.
Molecular Medicine | 2010
Michael Bacher; Oliver Deuster; Bayan Aljabari; Rupert Egensperger; Frauke Neff; Frank Jessen; Julius Popp; Carmen Noelker; Jens Peter Reese; Yousef Al-Abed; Richard Dodel
Previous studies have shown that amyloid β protein (Aβ), the essential molecule for the formation of toxic oligomers and, subsequently, Alzheimer plaques, has been associated in vivo with the immune modulator, macrophage migration inhibitory factor (MIF) (17). To further investigate this association in vivo we used the APP transgenic mouse model. Serial brain sections of transgenic APP mice were stained for Aβ plaques and MIF and we observed MIF immunolabeling in microglial cells in association with Aβ plaques in the transgenic mouse brain sections. In addition, functional studies in murine and human neuronal cell lines revealed that Aβ-induced toxicity could be reversed significantly by a small molecule inhibitor of MIF (ISO-1). Finally, to elucidate the role of MIF in Alzheimer’s Disease (AD) we measured MIF levels in the brain cytosol and cerebrospinal fluid (CSF) of AD patients and age-matched controls. Our results demonstrate a marked increase of MIF levels within the CSF of AD patients compared with controls. Combined, our results indicate a strong role for MIF in the pathogenesis of AD and furthermore suggest that inhibition of MIF may provide a valuable avenue of investigation for the prevention of disease onset, progression and/or severity.
Neuroscience Letters | 2009
Michael Bacher; Candan Depboylu; Yansheng Du; Carmen Noelker; Wolfgang H. Oertel; Thomas M. Behr; Gjermund Henriksen; Martin Behe; Richard Dodel
Active as well as passive immunization against beta-amlyoid (Abeta) has been proposed as a treatment to lower cerebral amyloid burden and stabilize cognitive decline in Alzheimers disease (AD). To clarify the mechanism of action underlying passive immunization, the in vivo distribution (and sites of degradation) of peripherally administered radiolabeled human and mouse anti-Abeta antibodies were analyzed in a transgenic mouse model of AD. In APP23 mice, a model in which mutated human amyloid precursor protein is overexpressed, the biodistribution of intravenously applicated (111)indium-conjugated affinity-purified human polyclonal autoantibodies (NAbs-Abeta) was compared to that of monoclonal anti-Abeta(1-17) (6E10), anti-Abeta(17-24) antibodies (4G8) and anti-CD-20 (Rituximab), a non-Abeta targeting control. Blood clearance half-lives were 50+/-6h for Rituximab, 20-30h for NAbs-Abeta, 29+/-5h for 4G8 and 27+/-3h for 6E10. Blood activity was higher for 6E10 at 4h as compared to 4G8, Rituximab and NAbs-Abeta. At the 96h time point, Rituximab had the highest blood activity among the antibodies tested. As expected, all antibodies displayed hepatobiliary clearance. Additionally, NAbs-Abeta was excreted in the urinary tract. Liver and kidney uptake of NAbs-Abeta increased over time and was higher than in the monoclonal antibodies at 48h/96h. The brain-to-blood radioactivity ratio for NAbs-Abeta at later time points (>48h) was higher than that of 6E10, 4G8 and Rituximab. In addition, the distribution varied, with highest values found in the hippocampus. Our data indicate a cerebral accumulation of human NAbs-Abeta in the APP23 model. Further studies with human immunoglobulins and particularly with those that recognize different Abeta-epitopes are required in order to delineate in more detail the mode of action of NAbs-Abeta.
Molecular Diagnosis & Therapy | 2012
Carmen Noelker; Harald Hampel; Richard Dodel
Biomarker research is a rapidly advancing field in medicine. Recent advances in genomic, genetic, epigenetic, neuroscientific, proteomic, and metabolomic knowledge and technologies have opened the way to thriving research. In the most general sense, a biomarker refers to any useful characteristic that can be measured and used as an indicator of a normal biologic process, a pathogenic process, or a pharmacologic response to a therapeutic agent. Despite the extensive resources concentrated on this area, there are very few biomarkers currently available that qualify and are satisfactorily validated for mental disorders, and there is still a major lack of biomarkers for typifying neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. This article provides an overview of this field of research and focuses on recent advances in biomarker research in Alzheimer’s disease and Parkinson’s disease.
Journal of Neuroscience Research | 2011
Nina Baron; Oliver Deuster; Carmen Noelker; Carsten Stüer; Herwig Strik; Carlo Schaller; Richard Dodel; Bernhard Meyer; Michael Bacher
Macrophage migration inhibitory factor (MIF) is a protein that is overexpressed in many tumors, such as colon and prostate cancer, melanoma, and glioblastoma multiforme (GBM). In its function as a cytokine, MIF induces angiogenesis, promotes cell cycle progression, and inhibits apoptosis. Recently, the molecular signal transduction has been specified: MIF has been found to be a ligand to the CD74/CD44‐receptor complex and to activate the ERK1/2 MAPK cascade. In addition MIF binds to the chemokine receptors CXCR2 and CXCR4. This effects an integrin‐dependent leukocyte arrest and mediates leukocyte chemotaxis. Recent work has described a clearer role of MIF in GBM tumor cell lines. The current study used human primary GBM cells. We show that inhibition of MIF with ISO‐1, an inhibitor of the D‐dopachrome tautomerase site of MIF, reduced the growth rate of primary GBM cells in a dose‐dependent manner, and in addition ISO‐1 increased protein expression of MIF and its receptors CD74, CXCR2, and CXCR4 in vitro but decreased expression of CD44. Furthermore, hypoxia as cell stressor increases the protein expression of MIF in primary GBM cells. These results underscore the importance of MIF in GBM and show that MIF and its receptors may be a promising target for the treatment of malignant gliomas.
Journal of Parkinson's disease | 2013
Vanessa Stuckenholz; Michael Bacher; Monika Balzer-Geldsetzer; Daniel Alvarez-Fischer; Wolfgang H. Oertel; Richard Dodel; Carmen Noelker
BACKGROUND Parkinsons disease (PD) is associated with neurodegeneration of dopaminergic neurons and an accompanying neuroinflammatory process in the substantia nigra (SN). The cholinergic anti-inflammatory signalling pathway allows the autonomic nervous system to modulate immunologic stimuli and inflammatory processes. A major component of this pathway is the α7 nicotinic acetylcholine receptor (α7 nACh receptor), which is expressed on immune cells such as microglia. OBJECTIVE To determine the role of this cholinergic anti-inflammatory signalling pathway, we investigated the effects of the selective α7 nACh agonist PNU-282987 and of the non-competitive nACh antagonist mecamylamine on microglia-induced neuroinflammation and toxin-induced degeneration of dopaminergic neurons in a mouse model of PD. METHODS PNU-282987, mecamylamine or placebo administration was started one day before MPTP intoxication and repeated daily until sacrifice after MPTP intoxication. C57Bl/6 mice were injected intraperitoneally four times at 2 h intervals with either 20 mg/kg MPTP-HCl or a corresponding volume of saline. Two or seven days after the end of the MPTP intoxication, the animals were killed and their brains were processed for further analysis. RESULTS Treatment with PNU-282987 resulted in an attenuation of neuroinflammation in the MPTP-lesioned SN. Furthermore, PNU-282987 attenuated MPTP-induced dopaminergic cell loss in the SN and reduced striatal dopamine depletion. Unexpectedly, mecamylamine lowered neuroinflammation as well, though it did not show a neuroprotective potential at the nigral level. CONCLUSIONS Our results demonstrate the therapeutic potential of the selective α7 nicotinic acetylcholine agonist PNU-282987 in attenuating neuroinflammation and toxin-induced loss of dopaminergic neurons in the acute MPTP mouse model of PD.