Carmen Vicente
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carmen Vicente.
Nature Genetics | 2013
Kim De Keersmaecker; Zeynep Kalender Atak; Ning Li; Carmen Vicente; Stephanie Patchett; Tiziana Girardi; Valentina Gianfelici; Ellen Geerdens; Emmanuelle Clappier; Michaël Porcu; Idoya Lahortiga; Rossella Luca; Jiekun Yan; Gert Hulselmans; Hilde Vranckx; Roel Vandepoel; Bram Sweron; Kris Jacobs; Nicole Mentens; Iwona Wlodarska; Barbara Cauwelier; Jacqueline Cloos; Jean Soulier; Anne Uyttebroeck; Claudia Bagni; Bassem A. Hassan; Peter Vandenberghe; Arlen W. Johnson; Stein Aerts; Jan Cools
T-cell acute lymphoblastic leukemia (T-ALL) is caused by the cooperation of multiple oncogenic lesions. We used exome sequencing on 67 T-ALLs to gain insight into the mutational spectrum in these leukemias. We detected protein-altering mutations in 508 genes, with an average of 8.2 mutations in pediatric and 21.0 mutations in adult T-ALL. Using stringent filtering, we predict seven new oncogenic driver genes in T-ALL. We identify CNOT3 as a tumor suppressor mutated in 7 of 89 (7.9%) adult T-ALLs, and its knockdown causes tumors in a sensitized Drosophila melanogaster model. In addition, we identify mutations affecting the ribosomal proteins RPL5 and RPL10 in 12 of 122 (9.8%) pediatric T-ALLs, with recurrent alterations of Arg98 in RPL10. Yeast and lymphoid cells expressing the RPL10 Arg98Ser mutant showed a ribosome biogenesis defect. Our data provide insights into the mutational landscape of pediatric versus adult T-ALL and identify the ribosome as a potential oncogenic factor.
PLOS ONE | 2011
Marta M. Alonso; Ricardo Díez-Valle; Lorea Manterola; Angel Rubio; Dan Liu; Nahir Cortes-Santiago; Leire Urquiza; Patricia Jauregi; Adolfo López de Munain; Nicolás Sampron; Ander Aramburu; Sonia Tejada-Solís; Carmen Vicente; María D. Odero; Eva Bandrés; Jesús García-Foncillas; Miguel Angel Idoate; Frederick F. Lang; Juan Fueyo; Candelaria Gomez-Manzano
We undertook this study to understand how the transcription factor Sox2 contributes to the malignant phenotype of glioblastoma multiforme (GBM), the most aggressive primary brain tumor. We initially looked for unbalanced genomic rearrangements in the Sox2 locus in 42 GBM samples and found that Sox2 was amplified in 11.5% and overexpressed in all the samples. These results prompted us to further investigate the mechanisms involved in Sox2 overexpression in GBM. We analyzed the methylation status of the Sox2 promoter because high CpG density promoters are associated with key developmental genes. The Sox2 promoter presented a CpG island that was hypomethylated in all the patient samples when compared to normal cell lines. Treatment of Sox2-negative glioma cell lines with 5-azacitidine resulted in the re-expression of Sox2 and in a change in the methylation status of the Sox2 promoter. We further confirmed these results by analyzing data from GBM cases generated by The Cancer Genome Atlas project. We observed Sox2 overexpression (86%; Nu200a=u200a414), Sox2 gene amplification (8.5%; Nu200a=u200a492), and Sox 2 promoter hypomethylation (100%; Nu200a=u200a258), suggesting the relevance of this factor in the malignant phenotype of GBMs. To further explore the role of Sox2, we performed in vitro analysis with brain tumor stem cells (BTSCs) and established glioma cell lines. Downmodulation of Sox2 in BTSCs resulted in the loss of their self-renewal properties. Surprisingly, ectopic expression of Sox2 in established glioma cells was not sufficient to support self-renewal, suggesting that additional factors are required. Furthermore, we observed that ectopic Sox2 expression was sufficient to induce invasion and migration of glioma cells, and knockdown experiments demonstrated that Sox2 was essential for maintaining these properties. Altogether, our data underscore the importance of a pleiotropic role of Sox2 and suggest that it could be used as a therapeutic target in GBM.
Blood | 2010
Ion Cristóbal; Francisco J. Blanco; Laura Garcia-Orti; Nerea Marcotegui; Carmen Vicente; José Rifón; Francisco J. Novo; Eva Bandrés; María José Calasanz; Carmelo Bernabeu; María D. Odero
Acute myeloid leukemias (AMLs) result from multiple genetic alterations in hematopoietic stem cells. We describe a novel t(12;18)(p13;q12) involving ETV6 in a patient with AML. The translocation resulted in overexpression of SETBP1 (18q12), located close to the breakpoint. Overexpression of SETBP1 through retroviral insertion has been reported to confer growth advantage in hematopoietic progenitor cells. We show that SETBP1 overexpression protects SET from protease cleavage, increasing the amount of full-length SET protein and leading to the formation of a SETBP1-SET-PP2A complex that results in PP2A inhibition, promoting proliferation of the leukemic cells. The prevalence of SETBP1 overexpression in AML at diagnosis (n = 192) was 27.6% and was associated with unfavorable cytogenetic prognostic group, monosomy 7, and EVI1 overexpression (P < .01). Patients with SETBP1 overexpression had a significantly shorter overall survival, and the prognosis impact was remarkably poor in patients older than 60 years in both overall survival (P = .015) and event-free survival (P = .015). In summary, our data show a novel leukemogenic mechanism through SETBP1 overexpression; moreover, multivariate analysis confirms the negative prognostic impact of SETBP1 overexpression in AML, especially in elderly patients, where it could be used as a predictive factor in any future clinical trials with PP2A activators.
Critical Reviews in Oncology Hematology | 2012
Carmen Vicente; Ana Conchillo; María A. García-Sánchez; María D. Odero
Hematopoiesis involves an elaborate regulatory network of transcription factors that coordinates the expression of multiple downstream genes, and maintains homeostasis within the hematopoietic system through the accurate orchestration of cellular proliferation, differentiation and survival. As a result, defects in the expression levels or the activity of these transcription factors are intimately linked to hematopoietic disorders, including leukemia. The GATA family of nuclear regulatory proteins serves as a prototype for the action of lineage-restricted transcription factors. GATA1 and GATA2 are expressed principally in hematopoietic lineages, and have essential roles in the development of multiple hematopoietic cells, including erythrocytes and megakaryocytes. Moreover, GATA2 is crucial for the proliferation and maintenance of hematopoietic stem cells and multipotential progenitors. In this review, we summarize the current knowledge regarding the biological properties and functions of the GATA2 transcription factor in normal and malignant hematopoiesis.
Haematologica | 2015
Carmen Vicente; Claire Schwab; Michaël Broux; Ellen Geerdens; Sandrine Degryse; Sofie Demeyer; Idoya Lahortiga; Alannah Elliott; Lucy Chilton; Roberta La Starza; Cristina Mecucci; Peter Vandenberghe; Nicholas Goulden; Ajay Vora; Anthony V. Moorman; Jean Soulier; Christine J. Harrison; Emmanuelle Clappier; Jan Cools
T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia.
Leukemia | 2012
Carmen Vicente; Iria Vázquez; Ana Conchillo; M A García-Sánchez; Nerea Marcotegui; O Fuster; Marcos González; M J Calasanz; Idoya Lahortiga; María D. Odero
Overexpression of GATA2 predicts an adverse prognosis for patients with acute myeloid leukemia and it is associated with distinct molecular abnormalities
Blood | 2017
Tiziana Girardi; Carmen Vicente; Jan Cools; Kim De Keersmaecker
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy caused by the accumulation of genomic lesions that affect the development of T cells. For many years, it has been established that deregulated expression of transcription factors, impairment of the CDKN2A/2B cell-cycle regulators, and hyperactive NOTCH1 signaling play prominent roles in the pathogenesis of this leukemia. In the past decade, systematic screening of T-ALL genomes by high-resolution copy-number arrays and next-generation sequencing technologies has revealed that T-cell progenitors accumulate additional mutations affecting JAK/STAT signaling, protein translation, and epigenetic control, providing novel attractive targets for therapy. In this review, we provide an update on our knowledge of T-ALL pathogenesis, the opportunities for the introduction of targeted therapy, and the challenges that are still ahead.
Haematologica | 2011
Iria Vázquez; Miren Maicas; José Cervera; Xabier Agirre; Oskar Marin-Béjar; Nerea Marcotegui; Carmen Vicente; Idoya Lahortiga; Maria Gomez-Benito; Claudia Carranza; Ana Valencia; Salut Brunet; Eva Lumbreras; Felipe Prosper; María Teresa Gómez-Casares; Jesús María Hernández-Rivas; María José Calasanz; Miguel A. Sanz; Jorge Sierra; María D. Odero
Background The EVI1 gene (3q26) codes for a zinc finger transcription factor with important roles in both mammalian development and leukemogenesis. Over-expression of EVI1 through either 3q26 rearrangements, MLL fusions, or other unknown mechanisms confers a poor prognosis in acute myeloid leukemia. Design and Methods We analyzed the prevalence and prognostic impact of EVI1 over-expression in a series of 476 patients with acute myeloid leukemia, and investigated the epigenetic modifications of the EVI1 locus which could be involved in the transcriptional regulation of this gene. Results Our data provide further evidence that EVI1 over-expression is a poor prognostic marker in acute myeloid leukemia patients less than 65 years old. Moreover, we found that patients with no basal expression of EVI1 had a better prognosis than patients with expression/over-expression (P=0.036). We also showed that cell lines with over-expression of EVI1 had no DNA methylation in the promoter region of the EVI1 locus, and had marks of active histone modifications: H3 and H4 acetylation, and trimethylation of histone H3 lysine 4. Conversely, cell lines with no expression of EVI1 have DNA hypermethylation and are marked by repressive trimethylation of histone H3 lysine 27 at the EVI1 promoter. Conclusions Our results identify EVI1 over-expression as a poor prognostic marker in a large, independent cohort of acute myeloid leukemia patients less than 65 years old, and show that the total absence of EVI1 expression has a prognostic impact on the outcome of such patients. Furthermore, we demonstrated for the first time that an aberrant epigenetic pattern involving DNA methylation, H3 and H4 acetylation, and trimethylation of histone H3 lysine 4 and histone H3 lysine 27 might play a role in the transcriptional regulation of EVI1 in acute myeloid leukemia. This study opens new avenues for a better understanding of the regulation of EVI1 expression at a transcriptional level.
British Journal of Cancer | 2010
Maria Gomez-Benito; Ana Conchillo; M. A Garcia; Iria Vázquez; Miren Maicas; Carmen Vicente; Ion Cristóbal; Nerea Marcotegui; Laura Garcia-Orti; Eva Bandrés; M J Calasanz; M.L. Manzano Alonso; María D. Odero
Bakground:The EVI1(ecotropic virus integration site 1) gene codes for a zinc-finger transcription factor, whose transcriptional activation leads to a particularly aggressive form of acute myeloid leukaemia (AML). Although, EVI1 interactions with key proteins in hematopoiesis have been previously described, the precise role of this transcription factor in promoting leukaemic transformation is not completely understood. Recent works have identified specific microRNA (miRNA) signatures in different AML subgroups. However, there is no analysis of miRNAs profiles associated with EVI1 overexpression in humans.Methods:We performed QT-RT–PCR to assess the expression of 250 miRNAs in cell lines with or without EVI1 overexpression and in patient samples. We used ChIP assays to evaluated the possible binding of EVI1 binding to the putative miRNA promoter. Proliferation of the different cell lines transfected with the anti- or pre-miRs was quantified by MTT.Results:Our data showed that EVI1 expression was significantly correlated with the expression of miR-1-2 and miR-133-a-1 in established cell lines and in patient samples. ChIP assays confirmed that EVI1 binds directly to the promoter of these two miRNAs. However, only miR-1-2 was involved in abnormal proliferation in EVI1 expressing cell lines.Conclusions:Our data showed that EVI1 controls proliferation in AML through modulation of miR-1-2. This study contributes to further understand the transcriptional networks involving transcription factors and miRNAs in AML.
Leukemia | 2007
Carmen Vicente; Iria Vázquez; Nerea Marcotegui; Ana Conchillo; C Carranza; G Rivell; Eva Bandrés; I Cristobal; Idoya Lahortiga; María José Calasanz; María D. Odero
JAK2-V617F activating mutation in acute myeloid leukemia: prognostic impact and association with other molecular markers