Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmine Pappalettere is active.

Publication


Featured researches published by Carmine Pappalettere.


Medical & Biological Engineering & Computing | 2008

Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period

Antonio Boccaccio; Patrick J. Prendergast; Carmine Pappalettere; Daniel J. Kelly

Mandibular symphyseal distraction osteogenesis is a common clinical procedure to modify the geometrical shape of the mandible for correcting problems of dental overcrowding and arch shrinkage. In spite of consolidated clinical use, questions remain concerning the optimal latency period and the influence of mastication loading on osteogenesis within the callus prior to the first distraction of the mandible. This work utilized a mechano-regulation model to assess bone regeneration within the callus of an osteotomized mandible. A 3D model of the mandible was reconstructed from CT scan data and meshed using poroelastic finite elements (FE). The stimulus regulating tissue differentiation within the callus was hypothesized to be a function of the strain and fluid flow computed by the FE model. This model was then used to analyse tissue differentiation during a 15-day latency period, defined as the time between the day of the osteotomy and the day when the first distraction is given to the device. The following predictions are made: (1) the mastication forces generated during the latency period support osteogenesis in certain regions of the callus, and that during the latency period the percentage of progenitor cells differentiating into osteoblasts increases; (2) reducing the mastication load by 70% during the latency period increases the number of progenitor cells differentiating into osteoblasts; (3) the stiffness of new tissue increases at a slower rate on the side of bone callus next to the occlusion of the mandibular ramus which could cause asymmetries in the bone tissue formation with respect to the middle sagittal plane. Although the model predicts that the mastication loading generates such asymmetries, their effects on the spatial distribution of callus mechanical properties are insignificant for typical latency periods used clinically. It is also predicted that a latency period of longer than a week will increase the risk of premature bone union across the callus.


Journal of Biomechanics | 2010

An accurate validation of a computational model of a human lumbosacral segment

Vincenzo Moramarco; A. Pérez del Palomar; Carmine Pappalettere; M. Doblaré

Clinical studies have recently documented that there is sufficient evidence to suggest that abnormal motion may be an indicator of abnormal mechanics of the spine and, therefore, may be associated with some types of low-back pain. However, designating a motion as abnormal requires knowledge of normal motions. This work hence aims to develop an accurate computational model to simulate the bio-mechanical response of the whole lumbosacral spinal unit (L1-S1) under physiological loadings and constraint conditions. In order to meet this objective, computed tomography (CT) scanning protocols, finite element (FE) analysis and accurate constitutive modelling have been integrated. Then the ranges of motion (ROM) under flexion, extension and lateral bending moment were measured and compared with experimental data, finding an excellent agreement. In particular, the ability of the model to reproduce the relative rotation between each couple of vertebrae was proved. Finally, the shear stresses for the most extreme load cases were reported in order to predict which are the most risky conditions and where the maximum damage would be located. The results indicate that the greater values of the stresses were located at L4-S1 levels just in the interfaces between disc and vertebrae across the posterior and posterolateral zone. This result can be clinically correlated with the existence of damage exactly where the stresses were maximal in the proposed finite element model.


European Journal of Orthodontics | 2009

Numerical/experimental analysis of the stress field around miniscrews for orthodontic anchorage.

Antonio Gracco; A. Cirignaco; Mauro Cozzani; Antonio Boccaccio; Carmine Pappalettere; G. Vitale

The aims of this study were to analyse the stress distribution developing around an orthodontic miniscrew (OM) inserted into the maxilla and to determine the stress field changes for different screw lengths and for different levels of osseointegration occurring at the bone/screw interface. An integrated experimental/numerical approach was adopted. Using the photoelastic technique, the stress field arising in the bone after screw insertion and the application of the initial orthodontic load was assessed. The finite element (FE) method was used to determine the stress acting in the bony tissue after a given time following screw application, when, for the viscoelastic relaxation effects, the only stress field remaining was that due to the application of the orthodontic load. Different levels of osseointegration were hypothesized. Photoelastic analyses showed that stress distribution does not change significantly for moderate initial orthodontic loads. From the FE simulations, it was found that critical conditions occur for screws 14 mm long with an orthodontic load of 2 N. The optimal screw length seems to be 9 mm. For such a dimension, small stress values were found as well as low risk of lesion to the anatomical structures.


Journal of Strain Analysis for Engineering Design | 2009

Preliminary investigation on distribution of residual stress generated by the selective laser melting process

C. Casavola; S L Campanelli; Carmine Pappalettere

Selective laser melting (SLM) is one of the most interesting technologies used in rapid prototyping processes because of the possibility of building complex three-dimensional metal parts of nearly full density and with mechanical properties similar to those obtained with conventional manufacturing processes. This goal can be achieved using high-power lasers and low values of scan velocity. These conditions, together with an appropriate scanning strategy, allow full melting of the powders used in the process to be obtained. The aim of this paper is to investigate the residual stresses in SLM specimens manufactured from AISI Marage 300 steel. First, the strain gauge hole drilling method is utilized to determine residual stress profiles in a set of test samples of different thicknesses, placed in different positions on the building platform. Statistical analyses are performed in order to study the relationships between sample position on the platform, the distance from the specimen surface, and maximum/minimum principal residual stresses. The experimental results show that the melting/solidification mechanism generates highly variable thermal residual stresses in the SLM parts used in this study.


Composites Part B-engineering | 2001

An experimental investigation of static and fatigue behaviour of sandwich composite panels joined by fasteners

G. Demelio; Katia Genovese; Carmine Pappalettere

Abstract An experimental investigation has been carried out to estimate the static and fatigue behaviour of specimens made up of steel plates and sandwich composite panels joined together by either blind or mechanical lock fasteners. A preliminary study was carried out in order to analyse the drilling operation of sandwich panels to determine the best values of parameters to use for fastener installation. A first set of pull-out and shear static tests was performed in 1992, using sandwich panels composed of a nomex honeycomb core between two laminates of glass/graphite/kevlar fibres in epoxy matrix. The investigation was completed in 1998. It consisted of performing a set of pull-out and shear fatigue tests on joints with blind fasteners, and of performing a new set of static tests on identical specimens with the same loading conditions as in 1992 so as to evaluate the possible ageing effect on mechanical proprieties of sandwich panels tested.


Computers & Structures | 2003

Move limits definition in structural optimization with sequential linear programming. Part I: Optimization algorithm

Luciano Lamberti; Carmine Pappalettere

Abstract A variety of numerical methods have been proposed in literature in purpose to deal with the complexity and non-linearity of structural optimization problems. In practical design, sequential linear programming (SLP) is very popular because of its inherent simplicity and because linear solvers (e.g. Simplex) are easily available. However, SLP performance is sensitive to the definition of proper move limits for the design variables which task itself often involves considerable heuristics. This research presents a new SLP algorithm (LESLP––linearization error sequential linear programming) that implements an advanced technique for defining the move limits. The LESLP algorithm is formulated so to overcome the traditional limitations of the SLP method. The new algorithm is successfully tested in weight minimization problems of truss structures with up to hundreds of design variables and thousands of constraints: sizing and configuration problems are considered. Optimization problems of non-truss structures are also presented. The key-ideas of LESLP and the discussion on numerical efficiency of the new algorithm are presented in a two-part paper. The first part concerns the basics of the LESLP formulation and provides potential users with a guide to programming LESLP on computers. In a companion paper, the numerical efficiency, advantages and drawbacks of LESLP are discussed and compared to those of other SLP algorithms recently published or implemented in commercial software packages.


Ndt & E International | 2001

Thermographic investigation of sandwich structure made of composite material

V. Dattoma; R. Marcuccio; Carmine Pappalettere; G.M. Smith

In this paper an experimental procedure, by means of thermographic technique, was set up in order to detect some typical defects, which could be found in composite material sandwich structures. The material thermal response was investigated for different artificially defects inserted in some specimens; every kind of defect was listed. Then the experimental procedure was applied to study a wind-turbine blade made of sandwich composite structure. The results fulfilled the expectations and confirmed the reliability of the thermographic technique to be used both in laboratory and in service.


Computers & Structures | 2003

Move limits definition in structural optimization with sequential linear programming. Part II: Numerical examples

Luciano Lamberti; Carmine Pappalettere

Abstract A variety of numerical methods have been proposed in literature in purpose to deal with the complexity and non-linearity of structural optimization problems. In practical design, sequential linear programming (SLP) is very popular because of its inherent simplicity and because linear solvers (e.g. Simplex) are easily available. However, SLP performance is sensitive to the definition of proper move limits for the design variables which task itself often involves considerable heuristics. This research presents a new SLP algorithm (LESLP) that implements an advanced technique for defining the move limits. The linearization error sequential linear programming (LESLP) algorithm is formulated so to overcome the traditional limitations of the SLP method. In a companion paper [Comput. Struct. 81 (2003) 197] the basics of the LESLP formulation along with a guide to programming are provided. The new algorithm is successfully tested in weight minimisation problems of truss structures with up to hundreds of design variables and thousands of constraints: sizing and configuration problems are considered. Optimization problems of non-truss structures are also presented. The numerical efficiency, advantages and drawbacks of LESLP are discussed and compared to those of other SLP algorithms recently published or implemented in commercial software packages.


Journal of the Royal Society Interface | 2012

Nanoscale characterization of the biomechanical hardening of bovine zona pellucida

Antonio Boccaccio; M. C. Frassanito; Luciano Lamberti; Roberto Brunelli; Giuseppe Maulucci; Maurizio Monaci; Massimiliano Papi; Carmine Pappalettere; Tiziana Parasassi; Lakamy Sylla; Fulvio Ursini; Marco De Spirito

The zona pellucida (ZP) is an extracellular membrane surrounding mammalian oocytes. The so-called zona hardening plays a key role in fertilization process, as it blocks polyspermy, which may also be caused by an increase in the mechanical stiffness of the ZP membrane. However, structural reorganization mechanisms leading to ZPs biomechanical hardening are not fully understood yet. Furthermore, a correct estimate of the elastic properties of the ZP is still lacking. Therefore, the aim of the present study was to investigate the biomechanical behaviour of ZP membranes extracted from mature and fertilized bovine oocytes to better understand the mechanisms involved in the structural reorganization of the ZP that may lead to the biomechanical hardening of the ZP. For that purpose, a hybrid procedure is developed by combining atomic force microscopy nanoindentation measurements, nonlinear finite element analysis and nonlinear optimization. The proposed approach allows us to determine the biomechanical properties of the ZP more realistically than the classical analysis based on Hertzs contact theory, as it accounts for the nonlinearity of finite indentation process, hyperelastic behaviour and material heterogeneity. Experimental results show the presence of significant biomechanical hardening induced by the fertilization process. By comparing various hyperelastic constitutive models, it is found that the Arruda–Boyce eight-chain model best describes the biomechanical response of the ZP. Fertilization leads to an increase in the degree of heterogeneity of membrane elastic properties. The Young modulus changes sharply within a superficial layer whose thickness is related to the characteristic distance between cross-links in the ZP filamentous network. These findings support the hypothesis that biomechanical hardening of bovine ZP is caused by an increase in the number of inter-filaments cross-links whose density should be higher in the ZP inner side.


Computers & Structures | 2000

Comparison of the numerical efficiency of different sequential linear programming based algorithms for structural optimisation problems

Luciano Lamberti; Carmine Pappalettere

Abstract Amongst the different optimisation methods, the Sequential Linear Programming (S.L.P.) is very popular because of its conceptual simplicity and of the large availability of LP commercial packages (i.e. Simplex algorithm). Unfortunately, the numerical efficiency of the S.L.P. method depends meaningfully on a proper choice of the move limits that are adopted for the optimisation variables. In this paper the effect on the numerical solution of different move limits definition criteria has been investigated. Two different approaches (CGML and LEAML) for the definition of the move limits in Sequential Linear Programming are described and compared in terms of numerical efficiency in the solution of six problems of weight minimisation of bar trusses structures.

Collaboration


Dive into the Carmine Pappalettere's collaboration.

Top Co-Authors

Avatar

Luciano Lamberti

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

C. Casavola

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Antonio Boccaccio

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

G. Pappalettera

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

C. Barile

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Katia Genovese

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Umberto Galietti

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Moramarco

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Caterina Casavola

Polytechnic University of Bari

View shared research outputs
Top Co-Authors

Avatar

Massimiliano Papi

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge