Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol A. Bagnell is active.

Publication


Featured researches published by Carol A. Bagnell.


Reproduction in Domestic Animals | 2008

Epigenetic Programming of Porcine Endometrial Function and the Lactocrine Hypothesis

Frank F. Bartol; Anne A. Wiley; Carol A. Bagnell

Epigenetic programs controlling development of the female reproductive tract (FRT) are influenced by the effects of naturally occurring bioactive agents on patterns of gene expression in FRT tissues during organizationally critical periods of foetal and perinatal life. Aberrations in such important cellular and molecular events, as may occur with exposure to natural or manmade steroid or peptide receptor-modulating agents, disrupt the developmental program and can change the developmental trajectory of FRT tissues, including the endometrium, with lasting consequences. In the pig, as in other mammals, maternal programming of FRT development begins pre-natally and is completed post-natally, when maternal effects on development can be communicated via signals transmitted in milk. Studies involving relaxin (RLX), a prototypic milk-borne morphoregulatory factor (MbF), serve as the basis for ongoing efforts to identify maternal programming events that affect uterine and cervical tissues in the neonatal pig. Data support the lactocrine hypothesis for delivery of MbFs to neonates as a specific consequence of nursing. Components of a maternally driven lactocrine mechanism for RLX-mediated signalling in neonatal FRT tissues, including evidence that milk-borne RLX is delivered into the neonatal circulation where it can act on RLX receptor (RXFP1)-positive neonatal tissues to affect their development, are in place in the pig. The fact that all newborn mammals drink milk extends the timeframe of maternal influence on neonatal development across many species. Thus, lactocrine transmission of milk-borne developmental signals is an element of the maternal epigenetic programming equation that deserves further study.


Journal of Animal Science | 2013

Lactation Biology Symposium: lactocrine signaling and developmental programming.

Frank F. Bartol; Anne A. Wiley; Dori J. Miller; A. J. Silva; K. E. Roberts; M. L. P. Davolt; Joseph C. Chen; Amy-Lynn Frankshun; Meredith E. Camp; Kathleen M. Rahman; J. L. Vallet; Carol A. Bagnell

Lactocrine signaling is defined as transmission of bioactive factors from mother to offspring as a consequence of nursing. Lactocrine transmission of signaling molecules may be an evolutionarily conserved process through which bioactive factors necessary for support of neonatal development are delivered postnatally. Dependence on maternal resources for development in eutherian mammals extends into neonatal life for at least that period of time when nutrition is obtained solely from first milk (i.e., colostrum). Data for the pig (Sus scrofa domesticus) provide evidence of lactocrine mediated effects on development of the female reproductive tract and other somatic tissues. Porcine uterine gland development, an estrogen receptor-alpha (ESR1)-dependent process, begins within 2 d of birth [postnatal day (PND) 0]. A lactocrine-driven, ESR1-mediated process was proposed as a regulatory mechanism governing onset of uterine gland development and endometrial maturation in the neonatal pig. Gilts maintained in a lactocrine-null state for 2 d from birth by milk-replacer feeding displayed altered patterns of endometrial gene expression and retarded uterine gland development by PND 14. In lactocrine-null gilts, inhibition of endometrial and cervical ESR1 and vascular endothelial growth factor (VEGFA) expression observed on PND 2 persisted to PND 14, even after gilts were returned to nursing on PND 2. Collectively, data support a role for lactocrine signaling in regulation of critical neonatal developmental events. Maternal lactocrine programming of postnatal development may help to insure healthy developmental outcomes. A systems biology approach will be required to define and understand mechanistic dynamics of lactocrine signaling events that may ultimately connect genotype to phenotype and establish the parameters of reproductive potential.


Reproduction | 2008

Relaxin (RLX) and estrogen affect estrogen receptor α, vascular endothelial growth factor, and RLX receptor expression in the neonatal porcine uterus and cervix

Wenbo Yan; Joseph C. Chen; Anne A. Wiley; Bethany D Crean-Harris; Frank F. Bartol; Carol A. Bagnell

The porcine female reproductive tract undergoes estrogen receptor (ER) alpha-dependent development after birth (postnatal day=PND 0), the course of which can determine adult uterine function. Uterotrophic effects of relaxin (RLX) in the porcine neonate are age specific and may involve ER activation. Here, objectives were to determine effects of RLX and estrogen administered from birth on uterine and cervical growth and expression of ERalpha, vascular endothelial growth factor (VEGF), and the RLX receptor (RXFP1). On PND 0, gilts were treated with the antiestrogen ICI 182 780 (ICI) or vehicle alone and, 2 h later, were given estradiol-17beta (E) or porcine RLX for 2 days. Neither RLX nor E affected uterine wet weight or protein content on PND 2. However, RLX, but not E, increased cervical wet weight and protein content when compared with controls. Pretreatment with ICI did not inhibit RLX-stimulated cervical growth. Uterine and cervical ERalpha increased in response to RLX, but not E. Both RLX and E increased VEGF in the uterus and cervix on PND 2. Pretreatment with ICI increased VEGF in both tissues and increased RLX-induced cervical VEGF. In the uterus E, but not RLX, increased RXFP1 mRNA. In the cervix, E increased RXFP1 gene expression whereas RLX decreased it. Results indicate that the neonatal uterus and cervix are sensitive to E and RLX and that growth responses to RLX in these tissues differ by PND 2. Effects of RLX on uterine and cervical ERalpha and VEGF expression may be important for neonatal reproductive tract development.


Reproduction | 2011

Milk-borne lactocrine-acting factors affect gene expression patterns in the developing neonatal porcine uterus

Joseph C. Chen; Amy-Lynn Frankshun; Anne A. Wiley; Dori J. Miller; Kristene A. Welch; Teh-Yuan Ho; Frank F. Bartol; Carol A. Bagnell

Lactocrine communication of milk-borne bioactive factors (MbFs) from mother to offspring through nursing can affect neonatal development with lasting consequences. Relaxin (RLX), a lactocrine-active peptide found in porcine colostrum, stimulates estrogen receptor-α (ESR1) expression required for uterine development shortly after birth (postnatal day=PND 0). Whether other MbFs or cooperative lactocrine mechanisms affect the neonatal uterine developmental program is unknown. To determine the effects of age, nursing, and exogenous RLX on gene expression associated with uterine development, gilts (n=4-5/group) were assigned to nurse ad libitum or to receive milk replacer, with or without exogenous RLX (20 μg/kg BW i.m./6 h for 48 h), from birth to PND 2 when uteri were collected. Body weight and uterine weight increased (P<0.05) similarly from birth to PND 2 in all gilts. However, colostrum consumption was required for normal uterine ESR1, vascular endothelial growth factor (VEGFA), matrix metalloproteinase 9 (MMP9), and RLX receptor (RXFP1) protein and/or transcript expression on PND 2. Uterine ESR1, VEGFA, and MMP9 protein levels were below (P<0.01) the assay sensitivity in replacer-fed gilts. Supplemental RLX increased (P<0.05) uterine ESR1 protein and mRNA in nursed gilts, as well as VEGFA protein in nursed and VEGFA mRNA in both nursed and replacer-fed gilts. RLX treatment did not affect uterine MMP9 mRNA levels. When compared with replacer-fed gilts on PND 2, uterine RXFP1 mRNA was reduced (P<0.05) in nursed gilts and in RLX-supplemented replacer-fed gilts. These results constitute the first evidence that establishment of the neonatal porcine uterine developmental program requires maternal lactocrine support.


Journal of Leukocyte Biology | 2007

Relaxin-induced matrix metalloproteinase-9 expression is associated with activation of the NF-κB pathway in human THP-1 cells

Teh-Yuan Ho; Wenbo Yan; Carol A. Bagnell

Matrix metalloproteinases (MMPs) and relaxin (RLX) are reported to play an important role in tissue remodeling and wound repair. When macrophages populate wound sites, they secrete biologically active substances, including MMPs. The transcription factor NF‐κB is important in MMP gene regulation in macrophage cells. Thus, a monocyte/macrophage cell line, THP‐1, was used to study the molecular mechanism of RLX action on MMP‐2 and MMP‐9 expression. After 24 h incubation with porcine RLX (100 ng/ml), conditioned media (CM) and THP‐1 cells were collected. Gelatin zymography demonstrated an increase in pro‐MMP‐9 activity in response to RLX in CM, and no significant change in pro‐MMP‐2 expression was observed. Immunoblot analysis also revealed an increase in pro‐MMP‐9 in CM from RX‐treated THP‐1 cells. Gel EMSA showed that NF‐κB DNA‐binding activity was elevated in THP‐1 cells treated with RLX for 10 min and reached a peak at 30 min. The NF‐κB DNA complex was supershifted using antibodies against NF‐κB subunits p50 and p65. Increased expression of the p50 and p65 NF‐κB subunits was also detected in THP‐1 cells after RLX treatment. Incubation with RLX (90 min) reduced THP‐1 expression of the NF‐κB inhibitor protein, IκB‐α. Using a specific NF‐κB inhibitor, pyrrolidine dithiocarmate (PDTC) inhibited nuclear binding of NF‐κB. Pre‐exposure to PDTC suppressed pro‐MMP‐9 activity and protein levels in RLX‐treated THP‐1 cells. In conclusion, these data suggest that RLX‐induced tissue remodeling through increasing MMP‐9 expression is dependent on NF‐κB activation.


Bone | 2011

Effects of relaxin and estrogens on bone remodeling markers, receptor activator of NF-kB ligand (RANKL) and osteoprotegerin (OPG), in rat adjuvant-induced arthritis

Teh-Yuan Ho; Karen Santora; Joseph C. Chen; Amy-Lynn Frankshun; Carol A. Bagnell

Rheumatoid arthritis (RA) is characterized by joint inflammation and bone destruction. The receptor activator of nuclear factor-kappa B ligand (RANKL)-osteoprotegerin (OPG) system is important for maintaining the balance between bone resorption and formation. Both serum RANKL/OPG protein and synovial tissue RANKL/OPG mRNA ratios are elevated in patients with RA. Studies indicate that hormones of pregnancy, estrogens and relaxin, administered in combination, reduce circulating (TNF)-α and joint inflammation in a rat adjuvant-induced arthritis (AIA) model of RA. The purpose of this study was to investigate whether relaxin (RLX), alone or in combination with estrogens, regulates the bone remodeling markers RANKL and OPG in vivo and in vitro. Results show that in AIA rats, treatment with relaxin, estradiol valerate (EV) or EV in combination with relaxin had no effect on circulating RANKL. However, EV increased systemic OPG and combined treatment with EV and relaxin further increased circulating OPG in comparison to EV alone. Importantly, the RANKL/OPG protein ratio was lower in rats treated with EV or EV+RLX when compared to arthritic controls. Relaxin in combination with EV decreased local RANKL transcripts, increased OPG mRNA and decreased the RANKL/OPG mRNA ratio in joints of arthritic rats when compared to controls. RLX family peptide receptor 1 (RXFP1) gene expression in joints of AIA rats increased in response to EV and EV+RLX. In parathyroid hormone-pretreated murine UMR 106-01 osteoblast cells, 17-β-estradiol (E) and E+RLX increased RXFP1 transcripts, while RLX reduced RANKL mRNA and protein expression. However, in vitamin D-treated primary rat osteoblast cells E+RLX increased OPG protein and reduced the RANKL/OPG protein ratio. These results suggest that modulation of the RANKL-OPG system by estrogens and RLX may contribute to their antiarthritic effects on bone during pregnancy.


Journal of Pharmacology and Experimental Therapeutics | 2007

Antiarthritic Effects of Relaxin, in Combination with Estrogen, in Rat Adjuvant-Induced Arthritis

Karen Santora; Cordelia Rasa; Denise M. Visco; Bernard G. Steinetz; Carol A. Bagnell

The incidence and severity of rheumatoid arthritis (RA) are reduced during pregnancy. Estradiol-17β and relaxin (RLX), hormones of pregnancy, are implicated in decreased immune responsiveness. The aim of this study was to determine the effects of estrogen and RLX, alone or in combination, on the development of adjuvant-induced arthritis (AIA) in ovariectomized (OVX) Lewis rats. Arthritis was induced on day 0 by adjuvant injection in the left hind paw. Rats were treated with estradiol valerate (E), porcine RLX, E + RLX, or vehicle. Healthy OVX control animals were used for comparison. Treatment with RLX or E alone decreased adjuvant-induced inflammation in both the injected (primary) and noninjected (secondary) hind paws. Combined treatment with E and RLX was more effective than either hormone alone in blocking secondary paw inflammation. Furthermore, E plus RLX reduced changes to spleen and thymus weights induced by adjuvant injection. Both E and RLX alone decreased circulating tumor necrosis factor (TNF) α. The combination of E and RLX resulted in a greater decline in TNFα than treatment with either hormone alone. There was no effect of hormones on the proinflammatory cytokine, interleukin (IL)-1β. The anti-inflammatory cytokine IL-10 increased in response to E and E plus RLX. In conclusion, combined therapy with E and RLX was more effective than either hormone alone in reducing chronic inflammation, joint changes, and high circulating TNFα associated with AIA in rats. Accordingly, these hormones could play a role in reducing RA-induced inflammation during pregnancy by an effect on the immune system.


Reproduction | 2010

Transient estrogen exposure from birth affects uterine expression of developmental markers in neonatal gilts with lasting consequences in pregnant adults.

Joseph C. Chen; Anne A. Wiley; Teh-Yuan Ho; Amy-Lynn Frankshun; Kristin M Hord; Frank F. Bartol; Carol A. Bagnell

Disruption of estrogen-sensitive, estrogen receptor (ER)-dependent events during porcine uterine development between birth (postnatal day=PND 0) and PND 14 affects patterns of uterine morphoregulatory gene expression in the neonate with lasting consequences for reproductive success. Uterine capacity for conceptus support is reduced in pregnant adult gilts exposed to estradiol valerate (EV) for 14 days from birth. Objectives here were to determine effects of EV exposure from birth through PND 13 on neonatal uterine and adult endometrial markers of growth, patterning, and remodeling. Targets included the relaxin receptor (RXFP1), estrogen receptor-alpha (ESR1) and vascular endothelial growth factor (VEGFA), morphoregulatory markers HOXA10 and WNT7A, and the matrix metalloproteinases (MMP)2 and MMP9. Gilts were treated daily with EV (50 microg/kg body weight per day, i.m.) or corn oil vehicle from birth through PND 13. Uteri were obtained from neonates on PND 14 and from adults on pregnancy day 12 (PxD 12). In neonates, EV exposure from birth increased uterine RXFP1 gene expression, and both ESR1 and VEGFA proteins. At PxD 12, endometrial RXFP1 mRNA remained elevated, while ESR1 protein was reduced. Early EV treatment decreased neonatal uterine WNT7A, but increased HOXA10 expression. WNT7A expression was reduced in EV-treated adults. Transient EV exposure increased MMP9 transcripts at PND 14, whereas both latent and active MMP9 activity was increased due to early EV treatment in adults on PxD 12. Results support the hypothesis that transient, estrogen-induced disruption of porcine uterine development from birth alters early programming events that lead to functional consequences in the adult.


Biology of Reproduction | 2013

Nursing for 48 Hours from Birth Supports Porcine Uterine Gland Development and Endometrial Cell Compartment-Specific Gene Expression

Dori J. Miller; Anne A. Wiley; Joseph C. Chen; Carol A. Bagnell; Frank F. Bartol

ABSTRACT The first 2 wk of neonatal life constitute a critical period for estrogen receptor alpha (ESR1)-dependent uterine adenogenesis in the pig. A relaxin receptor (RXFP1)-mediated, lactocrine-driven mechanism was proposed to explain how nursing could regulate endometrial ESR1 and related gene expression events associated with adenogenesis in the porcine neonate during this period. To determine effects of nursing on endometrial morphogenesis and cell compartment-specific gene expression, gilts (n = 6–8/group) were assigned at birth to be either 1) nursed ad libitum for 48 h, 2) gavage fed milk replacer for 48 h, 3) nursed ad libitum to Postnatal Day (PND) 14, or 4) gavage fed milk replacer for 48 h followed by ad libitum nursing to PND 14. Uteri were collected on PND 2 or PND 14. Endometrial histoarchitecture and both ESR1 and proliferating cell nuclear antigen (PCNA) labeling indexes (LIs) were evaluated. Laser microdissection was used to capture epithelium and stroma to evaluate treatment effects on cell compartment-specific ESR1, VEGFA, and RXFP1 expression. Imposition of a lactocrine-null state by milk replacer feeding for 48 h from birth retarded endometrial development and adenogenesis. Effects of replacer feeding, evident by PND 2, were marked by PND 14 when endometrial thickness, glandularity, and gland depth were reduced. Consistently, in lactocrine-null gilts, PCNA LI was reduced in glandular epithelium (GE) and stroma on PND 14, when epithelial ESR1 expression and ESR1 LI in GE were reduced and stromal VEGFA and RXFP1 expression increased. Results establish that lactocrine signaling effects morphogenetic changes in developing uterine tissues that may determine reproductive capacity later in life.


Reproduction | 2011

Characterization and biological activity of relaxin in porcine milk.

Amy-Lynn Frankshun; Teh-Yuan Ho; David C Reimer; Joseph C. Chen; Salamia Lasano; Bernard G. Steinetz; Frank F. Bartol; Carol A. Bagnell

A lactocrine mechanism for delivery of maternally derived relaxin (RLX) into the neonatal circulation as a consequence of nursing was proposed for the pig. Immunoreactive RLX was detected in colostrum and in the serum of newborn pigs only if they were allowed to nurse. Milk-borne RLX concentrations are highest during early lactation (9-19  ng/ml), declining to <2  ng/ml by postnatal day 14. Whether milk-borne RLX is bioactive is unknown. Evidence that RLX concentrations in milk are higher than in maternal circulation in several species suggests the mammary gland as a site of local RLX production. It is unknown whether the porcine mammary gland is a source of RLX. Therefore, objectives were to evaluate RLX bioactivity in porcine milk during the first 2 weeks of lactation, identify the form of RLX in porcine milk, and determine whether mammary tissue from early lactation is a source of milk-borne RLX. Milk RLX bioactivity was determined using an in vitro bioassay in which cAMP production by human embryonic kidney (HEK293T) cells transfected with the human RLX receptor (RXFP1) was measured. RLX bioactivity was highest at lactation day (LD) 0, decreasing to undetectable levels by LD 4. Immunoblot analysis of milk proteins revealed an 18  kDa band, indicating proRLX as the primary form of RLX in porcine milk. ProRLX protein and transcripts were detected in porcine mammary tissue on LD 0 and 7. Results support the lactocrine hypothesis by defining the nature and a potential source for bioactive proRLX in porcine colostrum/milk.

Collaboration


Dive into the Carol A. Bagnell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph C. Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Ryan

Mississippi State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge