Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol A. Barnes is active.

Publication


Featured researches published by Carol A. Barnes.


Neuron | 1993

Expression of a mitogen-inducible cyclooxygenase in brain neurons: Regulation by synaptic activity and glucocorticoids

Kanato Yamagata; Katrin Andreasson; Walter E. Kaufmann; Carol A. Barnes; Paul F. Worley

Prostaglandins play important and diverse roles in the CNS. The first step in prostaglandin synthesis involves enzymatic oxidation of arachidonic acid, which is catalyzed by prostaglandin H(PGH) synthase, also referred to as cyclooxygenase. We have cloned an inducible form of this enzyme from rat brain that is nearly identical to a murine, mitogen-inducible cyclooxygenase identified from fibroblasts. Our studies indicate that this gene, here termed COX-2, is expressed throughout the forebrain in discrete populations of neurons and is enriched in the cortex and hippocampus. Neuronal expression is rapidly and transiently induced by seizures or NMDA-dependent synaptic activity. No expression is detected in glia or vascular endothelial cells. Basal expression of COX-2 appears to be regulated by natural synaptic activity in the developing and adult brain. Both basal and induced expression of COX-2 are inhibited by glucocorticoids, consistent with COX-2 regulation in peripheral tissues. Our studies indicate that COX-2 expression may be important in regulating prostaglandin signaling in brain. The marked inducibility in neurons by synaptic stimuli suggests a role in activity-dependent plasticity.


Neuron | 1995

ARC, A GROWTH FACTOR AND ACTIVITY-REGULATED GENE, ENCODES A NOVEL CYTOSKELETON-ASSOCIATED PROTEIN THAT IS ENRICHED IN NEURONAL DENDRITES

Gregory Lyford; Kanato Yamagata; Walter E. Kaufmann; Carol A. Barnes; Laura Sanders; Neal G. Copeland; Debra J. Gilbert; Nancy A. Jenkins; Anthony Lanahan; Paul F. Worley

Neuronal activity is an essential stimulus for induction of plasticity and normal development of the CNS. We have used differential cloning techniques to identify a novel immediate-early gene (IEG) cDNA that is rapidly induced in neurons by activity in models of adult and developmental plasticity. Both the mRNA and the encoded protein are enriched in neuronal dendrites. Analysis of the deduced amino acid sequence indicates a region of homology with alpha-spectrin, and the full-length protein, prepared by in vitro transcription/translation, coprecipitates with F-actin. Confocal microscopy of the native protein in hippocampal neurons demonstrates that the IEG-encoded protein is enriched in the subplasmalemmal cortex of the cell body and dendrites and thus colocalizes with the actin cytoskeletal matrix. Accordingly, we have termed the gene and encoded protein Arc (activity-regulated cytoskeleton-associated protein). Our observations suggest that Arc may play a role in activity-dependent plasticity of dendrites.


Nature Reviews Neuroscience | 2006

Neural plasticity in the ageing brain.

Sara N. Burke; Carol A. Barnes

The mechanisms involved in plasticity in the nervous system are thought to support cognition, and some of these processes are affected during normal ageing. Notably, cognitive functions that rely on the medial temporal lobe and prefrontal cortex, such as learning, memory and executive function, show considerable age-related decline. It is therefore not surprising that several neural mechanisms in these brain areas also seem to be particularly vulnerable during the ageing process. In this review, we discuss major advances in our understanding of age-related changes in the medial temporal lobe and prefrontal cortex and how these changes in functional plasticity contribute to behavioural impairments in the absence of significant pathology.


Experimental Brain Research | 1983

The contributions of position, direction, and velocity to single unit activity in the hippocampus of freely-moving rats

B.L. McNaughton; Carol A. Barnes; John O'Keefe

SummaryIsolated single units in rat dorsal hippocampus and fascia dentata were classified as ‘Theta’ or ‘Complex-Spike’ cells, and their firing characteristics were examined with respect to position, direction and velocity of movement during forced choice, food rewarded search behavior on a radial eight arm maze. Most spikes from CS cells ocurred when the animal was located within a particular place on the maze and moving in a particular direction. Theta cells had very low spatial selectivity. Both cell categories had discharge probabilities which increased somewhat as a function of running velocity but tended to asymptote well before half-maximal velocity. The place/direction specificity of CS cells was significantly higher in CA1 than in CA3 and CA3 CS cells exhibited a striking preference for the inward radial direction. The pronounced directional selectivity of CS cells, at least in the present environment, suggests that they fire in response to complex, but specific, stimulus features in the extramaze world rather than to absolute place in a non-egocentric space. An alternative possibility is that the geometrical constraints of the maze surface have a profound influence on the shapes of the response fields of CS cells.


Nature Neuroscience | 1999

Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles

John F. Guzowski; Bruce L. McNaughton; Carol A. Barnes; Paul F. Worley

We used fluorescent in-situ hybridization and confocal microscopy to monitor the subcellular distribution of the immediate-early gene Arc. Arc RNA appeared in discrete intranuclear foci within minutes of neuronal activation and subsequently disappeared from the nucleus and accumulated in the cytoplasm by 30 minutes. The time course of nuclear versus cytoplasmic Arc RNA accumulation was distinct, and could therefore be used to infer the activity history of individual neurons at two times. Following sequential exposure of rats to two different environments or to the same environment twice, the proportion of CA1 neurons with cytoplasmic, nuclear or overlapping Arc expression profiles matched predictions derived from ensemble neurophysiological recordings of hippocampal neuronal ensembles. Arc gene induction is thus specifically linked to neural encoding processes.


Progress in Neurobiology | 2003

Impact of aging on hippocampal function: plasticity, network dynamics, and cognition

Ephron S. Rosenzweig; Carol A. Barnes

Aging is associated with specific impairments of learning and memory, some of which are similar to those caused by hippocampal damage. Studies of the effects of aging on hippocampal anatomy, physiology, plasticity, and network dynamics may lead to a better understanding of age-related cognitive deficits. Anatomical and electrophysiological studies indicate that the hippocampus of the aged rat sustains a loss of synapses in the dentate gyrus, a loss of functional synapses in area CA1, a decrease in the NMDA-receptor-mediated response at perforant path synapses onto dentate gyrus granule cells, and an alteration of Ca(2+) regulation in area CA1. These changes may contribute to the observed age-related impairments of synaptic plasticity, which include deficits in the induction and maintenance of long-term potentiation (LTP) and lower thresholds for depotentiation and long-term depression (LTD). This shift in the balance of LTP and LTD could, in turn, impair the encoding of memories and enhance the erasure of memories, and therefore contribute to cognitive deficits experienced by many aged mammals. Altered synaptic plasticity may also change the dynamic interactions among cells in hippocampal networks, causing deficits in the storage and retrieval of information about the spatial organization of the environment. Further studies of the aged hippocampus will not only lead to treatments for age-related cognitive impairments, but may also clarify the mechanisms of learning in adult mammals.


The Journal of Neuroscience | 1999

Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics.

Hemant S. Kudrimoti; Carol A. Barnes; Bruce L. McNaughton

During slow wave sleep (SWS), traces of neuronal activity patterns from preceding behavior can be observed in rat hippocampus and neocortex. The spontaneous reactivation of these patterns is manifested as the reinstatement of the distribution of pairwise firing-rate correlations within a population of simultaneously recorded neurons. The effects of behavioral state [quiet wakefulness, SWS, and rapid eye movement (REM)], interactions between two successive spatial experiences, and global modulation during 200 Hz electroencephalographic (EEG) “ripples” on pattern reinstatement were studied in CA1 pyramidal cell population recordings. Pairwise firing-rate correlations during often repeated experiences accounted for a significant proportion of the variance in these interactions in subsequent SWS or quiet wakefulness and, to a lesser degree, during SWS before the experience on a given day. The latter effect was absent for novel experiences, suggesting that a persistent memory trace develops with experience. Pattern reinstatement was strongest during sharp wave–ripple oscillations, suggesting that these events may reflect system convergence onto attractor states corresponding to previous experiences. When two different experiences occurred in succession, the statistically independent effects of both were evident in subsequent SWS. Thus, the patterns of neural activity reemerge spontaneously, and in an interleaved manner, and do not necessarily reflect persistence of an active memory (i.e., reverberation). Firing-rate correlations during REM sleep were not related to the preceding familiar experience, possibly as a consequence of trace decay during the intervening SWS. REM episodes also did not detectably influence the correlation structure in subsequent SWS, suggesting a lack of strengthening of memory traces during REM sleep, at least in the case of familiar experiences.


The Journal of Neuroscience | 1995

Interactions between location and task affect the spatial and directional firing of hippocampal neurons.

Etan J. Markus; Yl Qin; B Leonard; William E. Skaggs; Bruce L. McNaughton; Carol A. Barnes

When rats forage for randomly dispersed food in a high walled cylinder the firing of their hippocampal “place” cells exhibits little dependence on the direction faced by the rat. On radial arm mazes and similar tasks, place cells are strongly directionally selective within their fields. These tasks differ in several respects, including the visual environment, configuration of the traversable space, motor behavior (e.g., linear and angular velocities), and behavioral context (e.g., presence of specific, consistent goal locations within the environment). The contributions of these factors to spatial and directional tuning of hippocampal neurons was systematically examined in rats performing several tasks in either an enriched or a sparse visual environment, and on different apparati. Place fields were more spatially and directionally selective on a radial maze than on an open, circular platform, regardless of the visual environment. On the platform, fields were more directional when the rat searched for food at fixed locations, in a stereotypic and directed manner, than when the food was scattered randomly. Thus, it seems that place fields are more directional when the animal is planning or following a route between points of special significance. This might be related to the spatial focus of the rats attention (e.g., a particular reference point). Changing the behavioral task was also accompanied by a change in firing location in about one-third of the cells. Thus, hippocampal neuronal activity appears to encode a complex interaction between locations, their significance and the behaviors the rat is called upon to execute.


Journal of Neuroscience Methods | 1983

The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records

B.L. McNaughton; John O'Keefe; Carol A. Barnes

A new method is described for the recording and discrimination of extracellular action potentials in CNS regions with high cellular packing density or where there is intrinsic variation in action potential amplitude during burst discharge. The method is based on the principle that cells with different ratios of distances from two electrode tips will have different spike-amplitude ratios when recorded on two channels. The two channel amplitude ratio will remain constant regardless of intrinsic variation in the absolute amplitude of the signals. The method has been applied to the rat hippocampal formation, from which up to 5 units have been simultaneously isolated. The construction of the electrodes is simple, relatively fast, and reliable, and their low tip impedances result in excellent signal to noise characteristics.


Nature Reviews Neuroscience | 2011

A pathophysiological framework of hippocampal dysfunction in ageing and disease.

Scott A. Small; Scott A. Schobel; Richard B. Buxton; Menno P. Witter; Carol A. Barnes

The hippocampal formation has been implicated in a growing number of disorders, from Alzheimers disease and cognitive ageing to schizophrenia and depression. How can the hippocampal formation, a complex circuit that spans the temporal lobes, be involved in a range of such phenotypically diverse and mechanistically distinct disorders? Recent neuroimaging findings indicate that these disorders differentially target distinct subregions of the hippocampal circuit. In addition, some disorders are associated with hippocampal hypometabolism, whereas others show evidence of hypermetabolism. Interpreted in the context of the functional and molecular organization of the hippocampal circuit, these observations give rise to a unified pathophysiological framework of hippocampal dysfunction.

Collaboration


Dive into the Carol A. Barnes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul F. Worley

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B.L. McNaughton

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Rao

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge