Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol A. Everson is active.

Publication


Featured researches published by Carol A. Everson.


Behavioural Brain Research | 1995

Functional consequences of sustained sleep deprivation in the rat

Carol A. Everson

Sleep deprivation disrupts vital biological processes that are necessary for cognitive ability and physical health, but the physiological changes that underlie these outward effects are largely unknown. The purpose of the present studies in the laboratory rat is to prolong sleep deprivation to delineate the pathophysiology and to determine its mediation. In the rat, the course of prolonged sleep deprivation has a syndromic nature and eventuates in a life-threatening state. An early and central symptom of sleep deprivation is a progressive increase in peripheral energy expenditure to nearly double normal levels. An attempt to alleviate this negative energy balance by feeding rats a balanced diet that is high in its efficiency of utilization prolongs survival and attenuates or delays development of malnutrition-like symptoms, indicating that several symptoms can be manipulated to some extent by energy and nutrient consumption. Most changes in neuroendocrine parameters appear to be responses to metabolic demands, such as increased plasma catecholamines indicating sympathetic activation. Plasma total thyroid hormones, however, decline to severely low levels; a metabolic complication that is associated with other sleep deprivation-induced symptoms, such as a decline in body temperature to hypothermic levels despite increased energy expenditure. Metabolic mapping of the brain revealed a dissociation between the energy metabolism of the brain and that of the body. Sleep deprivations effects on cerebral structures are heterogeneous and unidirectional toward decreased functional activity. The hypometabolic brain structures are concentrated in the hypothalamus, thalamus and limbic systems, whereas few regions in the rest of the brain and none in the medulla, are affected. Correspondence can be found between some of the affected cerebral structures and several of the peripheral symptoms, such as hyperphagia and possible heat retention problems. The factor predisposing to mortality is a decreased resistance to infection. Lethal opportunistic organisms are permitted to infect the bloodstream, which presumably results in a cascade of toxic-like reactions. Host defense is thus the first system to fail. There is neither fever nor marked tissue inflammatory reactions typical of infectious disease states, suggesting that sleep deprivation is immunosuppressive. Each of the four abnormalities identified--(1) a deep negative energy balance and associated malnutrition; (2) heterogeneous decreases in cerebral function; (3) low thyroid hormone concentrations; and (4) decrease resistance to infection--can be viewed as having an early origin during the sleep deprivation process to signify the foremost pathogenic situation to which the other abnormalities might be secondarily related.(ABSTRACT TRUNCATED AT 400 WORDS)


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Recurrent restriction of sleep and inadequate recuperation induce both adaptive changes and pathological outcomes

Carol A. Everson; Aniko Szabo

Chronic restriction of a basic biological need induces adaptations to help meet requisites for survival. The adaptations to chronic restriction of sleep are unknown. A single episode of 10 days of partial sleep loss in rats previously was shown to be tolerated and to result in increased food intake and loss of body weight as principal signs. The purpose of the present experiment was to investigate the extent to which adaptation to chronic sleep restriction would ameliorate short-term effects and result in a changed internal phenotype. Rats were studied during 10 wk of multiple periods of restricted and unrestricted sleep to allow adaptive changes to develop. Control rats received the same ambulatory requirements only consolidated into periods that lessened interruptions of their sleep. The results indicate a latent period of relatively stable food and water intake without weight gain, followed by a dynamic phase marked by enormous increases in food and water intake and progressive loss of body weight, without malabsorption of calories. Severe consequences ensued, marked especially by changes to the connective tissues, and became fatal for two individuals. The most striking changes to internal organs in sleep-restricted rats included lengthening of the small intestine, decreased size of adipocytes, and increased incidence of multilocular adipocytes. Major organs accounted for an increased proportion of total body mass. These changes to internal tissues appear adaptive in response to high energy production, decomposition of lipids, and increased need to absorb nutrients, but ultimately insufficient to compensate for inadequate sleep.


PLOS ONE | 2011

Repeated Exposure to Severely Limited Sleep Results in Distinctive and Persistent Physiological Imbalances in Rats

Carol A. Everson; Aniko Szabo

Chronic sleep disruption in laboratory rats leads to increased energy expenditure, connective tissue abnormalities, and increased weights of major organs relative to body weight. Here we report on expanded findings and the extent to which abnormalities become long-lasting, potentially permanent changes to health status after apparent recuperation from chronic sleep disruption. Rats were exposed 6 times to long periods of disrupted sleep or control conditions during 10 weeks to produce adaptations and then were permitted nearly 4 months of undisturbed sleep. Measurements were made in tissues from these groups and in preserved tissue from the experimental and control groups of an antecedent study that lacked a lengthy recuperation period. Cycles of sleep restriction resulted in energy deficiency marked by a progressive course of hyperphagia and major (15%) weight loss. Analyses of tissue composition in chronically sleep-restricted rats indicated that protein and lipid amounts in internal organs were largely spared, while adipose tissue depots appeared depleted. This suggests high metabolic demands may have preserved the size of the vital organs relative to expectations of severe energy deficiency alone. Low plasma corticosterone and leptin concentrations appear to reflect low substrate availability and diminished adiposity. After nearly 4 months of recuperation, sleep-restricted rats were consuming 20% more food and 35% more water than did comparison control rats, despite normalized weight, normalized adipocytes, and elevated plasma leptin concentrations. Plasma cholesterol levels in recuperated sleep-restricted rats were diminished relative to those of controls. The chronically increased intake of nutriments and water, along with altered negative feedback regulation and substrate use, indicate that internal processes are modified long after a severe period of prolonged and insufficient sleep has ended.


Sleep | 2014

Cell Injury and Repair Resulting from Sleep Loss and Sleep Recovery in Laboratory Rats

Carol A. Everson; Christopher J. Henchen; Aniko Szabo; Neil Hogg

STUDY OBJECTIVES Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. DESIGN Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. MEASUREMENTS AND RESULTS Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. CONCLUSIONS These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury.


Experimental Biology and Medicine | 2012

Chronically inadequate sleep results in abnormal bone formation and abnormal bone marrow in rats

Carol A. Everson; Anne E Folley; Jeffrey M. Toth

Insufficient sleep over long durations of the lifespan is believed to adversely affect proper development and healthful aging, although how this might become manifested is unknown. In the present study, rats were repeatedly sleep-restricted during 72 days to permit maladaptations to evolve, thereby permitting study. Densitometric and histomorphometric analyses were performed on harvested bone. In sleep-restricted rats, bone lined by osteoid was reduced 45-fold and osteoid thickness was decreased, compared with controls. This corresponded to a decrease in osteoblast number and activity. The percentage of bone lined by osteoclasts did not differ from that of controls. Plasma concentrations of an osteoclast marker (TRACP 5b) were increased in sleep-restricted rats, indicating increased bone resorption. The low amount of new bone formation without a reduction in bone resorption is diagnostic of osteopenia. Bone mineral density was decreased in femurs from sleep-restricted rats compared with controls, indicating osteoporosis. Red marrow in sleep-restricted rats contained only 37% of the fat and more than twice the number of megakaryocytes compared with that of the control rats. These findings in marrow suggest changed plasticity and increased hematopoiesis. Plasma concentrations of insulin-like growth factor-1, a known, major mediator of osteoblast differentiation and the proliferation of progenitor cells, was decreased by 30% in sleep-restricted rats. Taken together, these findings suggest that chronically inadequate sleep affects bone metabolism and bone marrow composition in ways that have implications for development, aging, bone healing and repair, and blood cell differentiation.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Phagocyte migration and cellular stress induced in liver, lung, and intestine during sleep loss and sleep recovery

Carol A. Everson; Christa D. Thalacker; Neil Hogg

Sleep is understood to possess recuperative properties and, conversely, sleep loss is associated with disease and shortened life span. Despite these critical attributes, the mechanisms and functions by which sleep and sleep loss impact health still are speculative. One of the most consistent, if largely overlooked, signs of sleep loss in both humans and laboratory rats is a progressive increase in circulating phagocytic cells, mainly neutrophils. The destination, if any, of the increased circulating populations has been unknown and, therefore, its medical significance has been uncertain. The purpose of the present experiment was to determine the content and location of neutrophils in liver and lung tissue of sleep-deprived rats. These are two principal sites affected by neutrophil migration during systemic inflammatory illness. The content of neutrophils in the intestine also was determined. Sleep deprivation in rats was produced for 5 and 10 days by the Bergmann-Rechtschaffen disk method, which has been validated for its high selectivity under freely moving conditions and which was tolerated and accompanied by a deep negative energy balance. Comparison groups included basal conditions and 48 h of sleep recovery after 10 days of sleep loss. Myeloperoxidase (MPO), an enzyme constituent of neutrophils, was extracted from liver, lung, and intestinal tissues, and its activity was determined by spectrophotometry. Leukocytes were located in vasculature and interstitial spaces in the liver and the lung by immunohistochemistry. Heme oxygenase-1, also known as heat shock protein-32 and a marker of cellular stress, and corticosterone also were measured. The results indicate neutrophil migration into extravascular liver and lung tissue concurrent with cell stress and consistent with tissue injury or infection induced by sleep loss. Plasma corticosterone was unchanged. Recovery sleep was marked by increased lung heme oxygenase-1, increased intestinal MPO activity, and abnormally low corticosterone, suggesting ongoing reactive processes as a result of prior sleep deprivation.


Metabolism-clinical and Experimental | 2017

The importance of the circadian system & sleep for bone health

Christine M. Swanson; Wendy M. Kohrt; Orfeu M. Buxton; Carol A. Everson; Kenneth P. Wright; Eric S. Orwoll; Steven Shea

Adequate sleep timed appropriately during the circadian night is important for numerous biological processes and systems. New evidence suggests that both sleep timing and duration may be important for optimal bone health as well. This review examines the diurnal variation of bone turnover markers (BTMs) and the importance of circadian clock genes in regulating bone mass. In addition, this review explores the evidence for a link between shift work (and its associated disturbances in sleep duration/quality and circadian alignment) and alterations in bone metabolism and bone health. Finally, we review how commonly used medications and over-the-counter substances (e.g. caffeine, melatonin) complicate the relationship between sleep and circadian disorders and bone health.


Sleep | 2002

Sleep deprivation in the rat: X. Integration and discussion of the findings.

Allan Rechtschaffen; Bernard M. Bergmann; Carol A. Everson; Clete A. Kushida; Marcia A. Gilliland


Sleep | 1989

Sleep Deprivation in the Rat: III. Total Sleep Deprivation

Carol A. Everson; Bernard M. Bergmann; Allan Rechtschaffen


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 1993

Sustained sleep deprivation impairs host defense

Carol A. Everson

Collaboration


Dive into the Carol A. Everson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aniko Szabo

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Neil Hogg

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Linda A. Toth

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christa D. Laatsch

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge