Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol A. Finn is active.

Publication


Featured researches published by Carol A. Finn.


Nature | 1998

Influence of subglacial geology on the onset of a West Antarctic ice stream from aerogeophysical observations

Robin E. Bell; Donald D. Blankenship; Carol A. Finn; David Leroy Morse; Theodore A. Scambos; John M. Brozena; Steven M. Hodge

Marine ice-sheet collapse can contribute to rapid sea-level rise. Today, the West Antarctic Ice Sheet contains an amount of ice equivalent to approximately six metres of sea-level rise, but most of the ice is in the slowly moving interior reservoir. A relatively small fraction of the ice sheet comprises several rapidly flowing ice streams which drain the ice to the sea. The evolution of this drainage system almost certainly governs the process of ice-sheet collapse. The thick and slow-moving interior ice reservoir is generally fixed to the underlying bedrock while the ice streams glide over lubricated beds at velocities of up to several hundred metres per year. The source of the basal lubricant — a water-saturated till, overlain by a water system — may be linked to the underlying geology. The West Antarctic Ice Sheet rests over a geologically complex region characterized by thin crust, high heat flows, active volcanism and sedimentary basins. Here we use aerogeophysical measurements to constrain the geological setting of the onset of an active West Antarctic ice stream. The onset coincides with a sediment-filled basin incised by a steep-sided valley. This observation supports the suggestion, that ice-stream dynamics — and therefore the response of the West Antarctice Ice Sheet to changes in climate — are strongly modulated by the underlying geology.


Nature | 2011

East Antarctic rifting triggers uplift of the Gamburtsev Mountains

Fausto Ferraccioli; Carol A. Finn; Tom A. Jordan; Robin E. Bell; Lester M. Anderson; Detlef Damaske

The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 1958. The preservation of Alpine topography in the Gamburtsevs may reflect extremely low long-term erosion rates beneath the ice sheet, but the mountains’ origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere.


Journal of Geophysical Research | 1997

Seismic reflection images beneath Puget Sound, western Washington State: The Puget Lowland thrust sheet hypothesis

Thomas L. Pratt; Samuel Y. Johnson; Christopher Potter; William J. Stephenson; Carol A. Finn

Seismic reflection data show that the densely populated Puget Lowland of western Washington state is underlain by subhorizontal Paleogene and Neogene sedimentary rocks deformed by west and northwest trending faults and folds. From south to north beneath the Lowland, features seen on the seismic data include: the horizontally-stratified, 3.5 km thick Tacoma sedimentary basin; the Seattle uplift with south dipping (∼20°) strata on its south flank and steeply (50° to 90°) north dipping strata and the west-trending Seattle fault on its north flank; the 7.5 km thick, northward-thinning Seattle sedimentary basin; the antiformal Kingston arch; and the northwest trending, transpressional Southern Whidbey Island fault zone (SWIF). Interpreting the uplifts as fault-bend and fault-propagation folds leads to the hypothesis that the Puget Lowland lies on a north directed thrust sheet. The base of the thrust sheet may lie at 14 to 20 km depth within or at the base of a thick block of basaltic Crescent Formation; its edges may be right-lateral strike-slip faults along the base of the Cascade Range on the east and the Olympic Mountains on the west. Our model suggests that the Seattle fault has a long-term slip rate of about 0.25 mm/year and is large enough to generate a M7.6 to 7.7 earthquake.


Geophysical Research Letters | 2001

Subglacial sediments: A regional geological template for ice flow in West Antarctica

Michael Studinger; Robin E. Bell; Donald D. Blankenship; Carol A. Finn; Robert A. Arko; David Leroy Morse; Ian Joughin

We use aerogeophysical data to estimate the distribution of marine subglacial sediments and fault-bounded sedimentary basins beneath the West Antarctic Ice Sheet (WAIS). We find that significant ice flow occurs exclusively in regions covered by subglacial sediments. The onsets and lateral margins of ice streams coincide with the limit of marine sediments. Lateral margins are also consistently linked with fault-bounded basins. We predict that the inland migration of ice streams B and C1 towards the ice divide outside the region covered by marine or rift sediments is unlikely. The subglacial geology has the potential to modulate the dynamic evolution of the ice streams and the WAIS.


Geology | 1999

Aeromagnetic legacy of early Paleozoic subduction along the Pacific margin of Gondwana

Carol A. Finn; David H. Moore; Detlef Damaske; Timothy Mackey

Comparison of the aeromagnetic signatures and geology of southeastern Australia and northern Victoria Land, Antarctica, with similar data from ancient subduction zones in California and Japan, provides a framework for reinterpretation of the plate tectonic setting of the Pacific margin of early Paleozoic Gondwana. In our model, the plutons in the Glenelg (southeastern Australia) and Wilson (northern Victoria Land) zones formed the roots of continental-margin magmatic arcs. Eastward shifting of arc magmatism resulted in the Stavely (southeastern Australia) and Bowers (northern Victoria Land) volcanic eruptions onto oceanic forearc crust. The turbidites in the Stawell (southeastern Australia) and Robertson Bay (northern Victoria Land zones) shed from the Glenelg and Wilson zones, respectively, were deposited along the trench and onto the subducting oceanic plate. The margin was subsequently truncated by thrust faults and uplifted during the Delamerian and Ross orogenies, leading to the present-day aeromagnetic signatures.


Tectonics | 1996

Patterns of late Cenozoic volcanic and tectonic activity in the West Antarctic rift system revealed by aeromagnetic surveys

John C. Behrendt; Richard W. Saltus; Detlef Damaske; Anne E. McCafferty; Carol A. Finn; Donald D. Blankenship; Robin E. Bell

Aeromagnetic surveys, spaced ≤5 km, over widely separated areas of the largely ice- and sea-covered West Antarctic rift system, reveal similar patterns of 100- to 1700-nT, shallow-source magnetic anomalies interpreted as evidence of extensive late Cenozoic volcanism. We use the aeromagnetic data to extend the volcanic rift interpretation over West Antarctica starting with anomalies over (1) exposures of highly magnetic, late Cenozoic volcanic rocks several kilometers thick in the McMurdo-Ross Island area and elsewhere; continuing through (2) volcanoes and subvolcanic intrusions directly beneath the Ross Sea continental shelf defined by marine magnetic and seismic reflection data and aeromagnetic data and (3) volcanic structures interpreted beneath the Ross Ice Shelf partly controlled by seismic reflection determinations of seafloor depth to (4) an area of similar magnetic pattern over the West Antarctic Ice Sheet (400 km from the nearest exposed volcanic rock), where interpretations of late Cenozoic volcanic rocks at the base of the ice are controlled in part by radar ice sounding. North trending magnetic rift fabric in the Ross Sea-Ross Ice Shelf and Corridor Aerogeophysics of the Southeast Ross Transect Zone (CASERTZ) areas, revealed by the aeromagnetic surveys, is probably a reactivation of older rift trends (late Mesozoic?) and is superimposed on still older crosscutting structural trends revealed by magnetic terrace maps calculated from horizontal gradient of pseudogravity. Long-wavelength (∼ 100-km wide) magnetic terraces from sources within the subvolcanic basement cross the detailed survey areas. One of these extends across the Ross Sea survey from the front of the Transantarctic Mountains with an east-southeast trend crossing the north trending rift fabric. The Ross Sea-Ross Ice Shelf survey area is characterized by highly magnetic northern and southern zones which are separated by magnetically defined faults from a more moderately magnetic central zone. Aeromagnetic data in the south delineate the Ross fault of unknown age. The extension of the southern Central Basin south of the Ross fault is associated with an 825-nT magnetic anomaly over the Ross Ice Shelf requiring inferred late Cenozoic volcanic rock essentially at the seafloor at its south end, as shown by magnetic models. Models show that the thickness of magnetic volcanic rocks beneath Hut Point Peninsula at McMurdo Station is probably 100,000 km of widely spaced aeromagnetic profiles, led to the interpretation of the mostly subglacial West Antarctic flood basalts(?) or their subglacially erupted and intruded equivalent. The volume of the exposed volcanos is small in contrast to the much greater volume (> 106 km³) of late Cenozoic magmatic rock remaining at volcanic centers beneath the continental shelf, Ross Ice Shelf and West Antarctic Ice Sheet. We suggest as an alternative or supplemental explanation to the previously proposed mantle plume hypothesis for the late Cenozoic volcanism significantly greater lower lithosphere (mantle) stretching resulting in greater decompression melting than the limited Cenozoic crustal extension allows. However, this implies a space problem that is not obviously resolved, because the Antarctic Plate is essentially surrounded by spreading centers.


Geological Society of America Bulletin | 1996

The southern Whidbey Island fault: An active structure in the Puget Lowland, Washington

Samuel Y. Johnson; Christopher J. Potter; John J. Miller; John M. Armentrout; Carol A. Finn; Craig S. Weaver

Information from seismic-reflection profiles, outcrops, boreholes, and potential field surveys is used to interpret the structure and history of the southern Whidbey Island fault in the Puget Lowland of western Washington. This northwest-trending fault comprises a broad (as wide as 6–11 km), steep, northeast-dipping zone that includes several splays with inferred strike-slip, reverse, and thrust displacement. Transpressional deformation along the southern Whidbey Island fault is indicated by along-strike variations in structural style and geometry, positive flower structure, local unconformities, out-of-plane displacements, and juxtaposition of correlative sedimentary units with different histories. The southern Whidbey Island fault represents a segment of a boundary between two major crustal blocks. The Cascade block to the northeast is floored by diverse assemblages of pre-Tertiary rocks; the Coast Range block to the southwest is floored by lower Eocene marine basaltic rocks of the Crescent Formation. The fault probably originated during the early Eocene as a dextral strike-slip fault along the eastern side of a continental-margin rift. Bending of the fault and transpressional deformation began during the late middle Eocene and continues to the present. Oblique convergence and clockwise rotation along the continental margin are the inferred driving forces for ongoing deformation. Evidence for Quaternary movement on the southern Whidbey Island fault includes (1) offset and disrupted upper Quaternary strata imaged on seismic-reflection profiles; (2) borehole data that suggests as much as 420 m of structural relief on the Tertiary-Quaternary boundary in the fault zone; (3) several meters of displacement along exposed faults in upper Quaternary sediments; (4) late Quaternary folds with limb dips of as much as ≈9°; (5) large-scale liquefaction features in upper Quaternary sediments within the fault zone; and (6) minor historical seismicity. The southern Whidbey Island fault should be considered capable of generating large earthquakes (M s ≥7) and represents a potential seismic hazard to residents of the Puget Lowland.


Journal of Volcanology and Geothermal Research | 2003

Exploration and discovery in Yellowstone Lake: Results from high-resolution sonar imaging, seismic reflection profiling, and submersible studies

Lisa A. Morgan; Wayne C. Shanks; David Lovalvo; Samuel Y. Johnson; William J. Stephenson; Kenneth L. Pierce; Stephen S. Harlan; Carol A. Finn; Gregory K. Lee; M.W. Webring; Boris Schulze; J. Duhn; R. Sweeney; Laurie S. Balistrieri

Abstract ‘No portion of the American continent is perhaps so rich in wonders as the Yellow Stone’ (F.V. Hayden, September 2, 1874) Discoveries from multi-beam sonar mapping and seismic reflection surveys of the northern, central, and West Thumb basins of Yellowstone Lake provide new insight into the extent of post-collapse volcanism and active hydrothermal processes occurring in a large lake environment above a large magma chamber. Yellowstone Lake has an irregular bottom covered with dozens of features directly related to hydrothermal, tectonic, volcanic, and sedimentary processes. Detailed bathymetric, seismic reflection, and magnetic evidence reveals that rhyolitic lava flows underlie much of Yellowstone Lake and exert fundamental control on lake bathymetry and localization of hydrothermal activity. Many previously unknown features have been identified and include over 250 hydrothermal vents, several very large (>500 m diameter) hydrothermal explosion craters, many small hydrothermal vent craters (∼1–200 m diameter), domed lacustrine sediments related to hydrothermal activity, elongate fissures cutting post-glacial sediments, siliceous hydrothermal spire structures, sublacustrine landslide deposits, submerged former shorelines, and a recently active graben. Sampling and observations with a submersible remotely operated vehicle confirm and extend our understanding of the identified features. Faults, fissures, hydrothermally inflated domal structures, hydrothermal explosion craters, and sublacustrine landslides constitute potentially significant geologic hazards. Toxic elements derived from hydrothermal processes also may significantly affect the Yellowstone ecosystem.


Journal of Geophysical Research | 1994

Aeromagnetic evidence for a buried Early Cretaceous magmatic arc, northeast Japan

Carol A. Finn

Positive aeromagnetic anomalies, recent drilling, and models constructed from these data delineate the plutonic roots of the Early Cretaceous Kitakami magmatic arc in northeast Japan. Buried plutons, mostly offshore, produce belts of positive magnetic anomalies. These anomalies and magnetotelluric data suggest that the plutons form a batholith 70–120 km wide, nearly 800 km long, and 10–15 km thick. The batholith may mark the location of the main Kitakami arc. Most of the exposed Kitakami plutons are 2–20 km in diameter; some are 3 km thick. The small plutons line up along NW trending faults; some may have been satellite vents that tapped into the magma supply of the main arc. The batholithic roots of the main arc now compose almost half of the modern Japan forearc basement. Steep magnetic gradients, offset anomalies, and basin stratigraphy portray extensive faulting of the Kitakami batholith during oblique subduction in the Late Cretaceous and rifting in the Miocene. The eastern boundary of the Kitakami batholith lies between 90 and 140 km west of the modern trench, much closer than the 300-km distance between the active arc and trench. The Early Cretaceous forearc basin and accretionary prism may underlie the modern forearc basin east of the batholith, but clear evidence is lacking. Much of the Early Cretaceous margin, including most of its forearc therefore is missing. How the material was removed is unknown: it could have been strike-slip faulted, eroded by subduction-related processes, or both.


Journal of Volcanology and Geothermal Research | 2002

High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

Carol A. Finn; Lisa A. Morgan

High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within Yellowstone Lake, which is mostly within the Yellowstone caldera, aeromagnetic lows also are associated with known hydrothermal activity in the lake. Many of the magnetic lows extend beyond the areas of alteration and hot springs, suggesting a more extensive currently active or fossil hydrothermal system than is currently mapped. Steep magnetic gradients, suggesting faults or fractures, bound the magnetic lows. This implies that fractures localize the hot springs. Magnetic gradient trends reflect the mapped Basin and Range structural trends of north and northwest, as well as northeasterly trends that parallel the regional trend of the Snake River Plain and the track of the Yellowstone hot spot which follow the Precambrian structural grain. These trends are found both at small scales such as in hydrothermal basins and at more regional fault scales, which suggests that the regional stress field and reactivated

Collaboration


Dive into the Carol A. Finn's collaboration.

Top Co-Authors

Avatar

Jeffrey J. Love

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Donald D. Blankenship

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Bedrosian

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John C. Behrendt

Institute of Arctic and Alpine Research

View shared research outputs
Top Co-Authors

Avatar

Ronald E. Sweeney

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Stefan Maus

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

David L. Williams

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge