Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol A. Gilchrist is active.

Publication


Featured researches published by Carol A. Gilchrist.


Nature | 2005

The genome of the protist parasite Entamoeba histolytica

Brendan J. Loftus; Anderson I; Richard J. Davies; Alsmark Uc; Samuelson J; Amedeo P; Roncaglia P; Matthew Berriman; Hirt Rp; Barbara J. Mann; Tomoyoshi Nozaki; Suh B; Mihai Pop; Duchene M; John P. Ackers; Tannich E; Leippe M; Hofer M; Iris Bruchhaus; Willhoeft U; Alok Bhattacharya; Tracey Chillingworth; Carol Churcher; Hance Z; Barbara Harris; David Harris; Kay Jagels; Sharon Moule; Karen Mungall; Doug Ormond

Entamoeba histolytica is an intestinal parasite and the causative agent of amoebiasis, which is a significant source of morbidity and mortality in developing countries. Here we present the genome of E. histolytica, which reveals a variety of metabolic adaptations shared with two other amitochondrial protist pathogens: Giardia lamblia and Trichomonas vaginalis. These adaptations include reduction or elimination of most mitochondrial metabolic pathways and the use of oxidative stress enzymes generally associated with anaerobic prokaryotes. Phylogenomic analysis identifies evidence for lateral gene transfer of bacterial genes into the E. histolytica genome, the effects of which centre on expanding aspects of E. histolyticas metabolic repertoire. The presence of these genes and the potential for novel metabolic pathways in E. histolytica may allow for the development of new chemotherapeutic agents. The genome encodes a large number of novel receptor kinases and contains expansions of a variety of gene families, including those associated with virulence. Additional genome features include an abundance of tandemly repeated transfer-RNA-containing arrays, which may have a structural function in the genome. Analysis of the genome provides new insights into the workings and genome evolution of a major human pathogen.


Advances in Parasitology | 2007

Structure and Content of the Entamoeba histolytica Genome

Clark Cg; Uc Alsmark; M Tazreiter; Yumiko Saito-Nakano; Ali; S Marion; C Weber; Chandrama Mukherjee; Iris Bruchhaus; Egbert Tannich; Matthias Leippe; Thomas Sicheritz-Pontén; Peter G. Foster; John Samuelson; Christophe Noël; Robert P. Hirt; Tm Embley; Carol A. Gilchrist; Barbara J. Mann; Upinder Singh; John P. Ackers; Sudha Bhattacharya; Alok Bhattacharya; Anuradha Lohia; N Guillén; Michael Duchêne; Tomoyoshi Nozaki; Neil Hall

The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.


Journal of Clinical Investigation | 2011

A mutation in the leptin receptor is associated with Entamoeba histolytica infection in children

Priya Duggal; Xiaoti Guo; Rashidul Haque; Kristine M. Peterson; Stacy M. Ricklefs; Dinesh Mondal; Faisal Alam; Zannatun Noor; Hans P. Verkerke; Chelsea Marie; Charles A. LeDuc; Streamson C. Chua; Martin G. Myers; Rudolph L. Leibel; Eric R. Houpt; Carol A. Gilchrist; Alan Sher; Stephen F. Porcella; William A. Petri

Malnutrition substantially increases susceptibility to Entamoeba histolytica in children. Leptin is a hormone produced by adipocytes that inhibits food intake, influences the immune system, and is suppressed in malnourished children. Therefore we hypothesized that diminished leptin function may increase susceptibility to E. histolytica infection. We prospectively observed a cohort of children, beginning at preschool age, for infection by the parasite E. histolytica every other day over 9 years and evaluated them for genetic variants in leptin (LEP) and the leptin receptor (LEPR). We found increased susceptibility to intestinal infection by this parasite associated with an amino acid substitution in the cytokine receptor homology domain 1 of LEPR. Children carrying the allele for arginine (223R) were nearly 4 times more likely to have an infection compared with those homozygous for the ancestral glutamine allele (223Q). An association of this allele with amebic liver abscess was also determined in an independent cohort of adult patients. In addition, mice carrying at least 1 copy of the R allele of Lepr were more susceptible to infection and exhibited greater levels of mucosal destruction and intestinal epithelial apoptosis after amebic infection. These findings suggest that leptin signaling is important in mucosal defense against amebiasis and that polymorphisms in the leptin receptor explain differences in susceptibility of children in the Bangladesh cohort to amebiasis.


Clinical Microbiology Reviews | 2015

Whole-Genome Sequencing in Outbreak Analysis

Carol A. Gilchrist; Stephen D. Turner; Margaret F. Riley; William A. Petri; Erik L. Hewlett

SUMMARY In addition to the ever-present concern of medical professionals about epidemics of infectious diseases, the relative ease of access and low cost of obtaining, producing, and disseminating pathogenic organisms or biological toxins mean that bioterrorism activity should also be considered when facing a disease outbreak. Utilization of whole-genome sequencing (WGS) in outbreak analysis facilitates the rapid and accurate identification of virulence factors of the pathogen and can be used to identify the path of disease transmission within a population and provide information on the probable source. Molecular tools such as WGS are being refined and advanced at a rapid pace to provide robust and higher-resolution methods for identifying, comparing, and classifying pathogenic organisms. If these methods of pathogen characterization are properly applied, they will enable an improved public health response whether a disease outbreak was initiated by natural events or by accidental or deliberate human activity. The current application of next-generation sequencing (NGS) technology to microbial WGS and microbial forensics is reviewed.


Journal of Biological Chemistry | 2001

Identification and Characterization of anEntamoeba histolytica Upstream Regulatory Element 3 Sequence-specific DNA-binding Protein Containing EF-hand Motifs

Carol A. Gilchrist; Chris F. Holm; Molly A. Hughes; Joanna M. Schaenman; Barbara J. Mann; William A. Petri

The hgl5 gene of Entamoeba histolytica is negatively regulated through the upstream regulatory element 3 (URE3) DNA motif TATTCTATT. This motif is also present and significant in the function of the E. histolytica fdx gene promoter. A yeast one-hybrid screen was used to identify an E. histolytica cDNA encoding a protein (URE3-BP) that recognized this DNA motif. Analysis of the predicted amino acid sequence demonstrated the presence of two EF-hand motifs but identified no canonical DNA binding motifs. URE3-BP, expressed in bacteria, demonstrated Ca2+-dependent and sequence-specific recognition of the URE3 DNA sequence as assessed by electrophoretic mobility shift assays. Antibodies raised against URE3-BP blocked the formation of the URE3 DNA-protein complex by native nuclear extracts. The URE3-BP protein was present in theE. histolytica nucleus and cytoplasm with an apparent molecular mass of 22.6 kDa. Our results represent the first use of a yeast genetic screen to identify, on the basis of function, a DNA-binding protein of an early branching eukaryote. Since the URE3 DNA can modulate gene expression in both a positive and negative manner, this protein may have more than one mechanism of interaction with transcriptional machinery. Characterization of URE3-BP should provide insight into transcription regulation and virulence control in this parasite.


Current Opinion in Microbiology | 1999

VIRULENCE FACTORS OF ENTAMOEBA HISTOLYTICA

Carol A. Gilchrist; William A. Petri

Recent studies have increased our knowledge of Entamoeba histolytica cell biology and gene regulation. In the ameba, dominant-negative mutations in the Gal/GalNAc lectin affect adhesion and cytolysis, whereas mutations in meromyosin affect cytoskeletal function. Studying these mutant proteins has improved our understanding of the role of these proteins in E. histolytica virulence. The characterization of the CP5 cysteine protease and the induction of apoptosis in host target cells has led to a better comprehension of the mechanisms by which trophozoites can lyse target cells.


International Journal for Parasitology | 2010

Members of the Entamoeba histolytica transmembrane kinase family play non-redundant roles in growth and phagocytosis

Sarah N. Buss; Shinjiro Hamano; Alda Vidrich; Clive Evans; Yan Zhang; Oswald Crasta; Bruno W. S. Sobral; Carol A. Gilchrist; William A. Petri

Entamoeba histolytica contains a large and novel family of transmembrane kinases (TMKs). The expression patterns of the E. histolytica TMKs in individual trophozoites and the roles of the TMKs for sensing and responding to extracellular cues were incompletely characterised. Here we provide evidence that single cells express multiple TMKs and that TMK39 and TMK54 likely serve non-redundant cellular functions. Laser-capture microdissection was used in conjunction with microarray analysis to demonstrate that single trophozoites express more than one TMK gene. Anti-peptide antibodies were raised against unique regions in the extracellular domains of TMK39, TMK54 and PaTMK, and TMK expression was analysed at the protein level. Flow cytometric assays revealed that populations of trophozoites homogeneously expressed TMK39, TMK54 and PaTMK, while confocal microscopy identified different patterns of cell surface expression for TMK39 and TMK54. The functions of TMK39 and TMK54 were probed by the inducible expression of dominant-negative mutants. While TMK39 co-localised with ingested beads and expression of truncated TMK39 interfered with trophozoite phagocytosis of apoptotic lymphocytes, expression of a truncated TMK54 inhibited growth of amoebae and altered the surface expression of the heavy subunit of the E. histolytica Gal/GalNAc lectin. Overall, our data indicates that multiple members of the novel E. histolytica TMK family are utilised for non-redundant functions by the parasite.


Journal of Biological Chemistry | 2003

Calcium Modulates Promoter Occupancy by the Entamoeba histolytica Ca2+-binding Transcription Factor URE3-BP

Carol A. Gilchrist; Megan Leo; C. Genghis Line; Barbara J. Mann; William A. Petri

The Entamoeba histolyticaupstream regulatory element 3-binding protein (URE3-BP) binds to the URE3 sequence of the Gal/GalNAc-inhibitable lectinhgl5 and ferredoxin 1 (fdx) gene promoters. This binding can be inhibited in vitro by addition of calcium. Two EF-hand motifs, which are associated with the ability to bind calcium, are present in the amino acid sequence of URE3-BP. Mutation of the second EF-hand motif in URE3-BP resulted in the loss of calcium inhibition of DNA binding as monitored by electrophoretic mobility shift assay. Chromatin immunoprecipitation assays revealed that URE3-BP was physically bound to thehgl5 and fdx promoters in vivo. Parasite intracellular calcium concentrations were altered by changes in extracellular calcium. Promoter occupancy was lost when intracellular calcium levels were increased by coordinate increases in extracellular calcium. Increased intracellular calcium also resulted in decreased levels of URE3-BP mRNA. Together these results demonstrate that changes in extracellular calcium result in changes in URE3-BP mRNA and in the ability of URE3-BP to bind to URE3-containing promoters. Modulation of URE3-BP by calcium may represent an important mechanism of control of gene expression inE. histolytica.


PLOS Neglected Tropical Diseases | 2008

Targets of the Entamoeba histolytica Transcription Factor URE3-BP

Carol A. Gilchrist; Duza J. Baba; Yan Zhang; Oswald Crasta; Clive Evans; Elisabet Caler; Bruno W. S. Sobral; Christina B. Bousquet; Megan Leo; Ameilia Hochreiter; Sarah K. Connell; Barbara J. Mann; William A. Petri

The Entamoeba histolytica transcription factor Upstream Regulatory Element 3-Binding Protein (URE3-BP) is a calcium-responsive regulator of two E. histolytica virulence genes, hgl5 and fdx1. URE3-BP was previously identified by a yeast one-hybrid screen of E. histolytica proteins capable of binding to the sequence TATTCTATT (Upstream Regulatory Element 3 (URE3)) in the promoter regions of hgl5 and fdx1. In this work, precise definition of the consensus URE3 element was performed by electrophoretic mobility shift assays (EMSA) using base-substituted oligonucleotides, and the consensus motif validated using episomal reporter constructs. Transcriptome profiling of a strain induced to produce a dominant-positive URE3-BP was then used to identify additional genes regulated by URE3-BP. Fifty modulated transcripts were identified, and of these the EMSA defined motif T[atg]T[tc][cg]T[at][tgc][tg] was found in over half of the promoters (54% p<0.0001). Fifteen of the URE3-BP regulated genes were potential membrane proteins, suggesting that one function of URE3-BP is to remodel the surface of E. histolytica in response to a calcium signal. Induction of URE3-BP leads to an increase in tranwell migration, suggesting a possible role in the regulation of cellular motility.


BMC Microbiology | 2012

A Multilocus Sequence Typing System (MLST) reveals a high level of diversity and a genetic component to Entamoeba histolytica virulence

Carol A. Gilchrist; Ibne Karim M. Ali; Mamun Kabir; Faisal Alam; Sana Scherbakova; Eric Ferlanti; Gareth D. Weedall; Neil Hall; Rashidul Haque; William A. Petri; Elisabet Caler

BackgroundThe outcome of an Entamoeba histolytica infection is variable and can result in either asymptomatic carriage, immediate or latent disease (diarrhea/dysentery/amebic liver abscess). An E. histolytica multilocus genotyping system based on tRNA gene-linked arrays has shown that genetic differences exist among parasites isolated from patients with different symptoms however, the tRNA gene-linked arrays cannot be located in the current assembly of the E. histolytica Reference genome (strain HM-1:IMSS) and are highly variable.ResultsTo probe the population structure of E. histolytica and identify genetic markers associated with clinical outcome we identified in E. histolytica positive samples selected single nucleotide polymorphisms (SNPs) by multiplexed massive parallel sequencing. Profile SNPs were selected which, compared to the reference strain HM-1:IMSS sequence, changed an encoded amino acid at the SNP position, and were present in independent E. histolytica isolates from different geographical origins. The samples used in this study contained DNA isolated from either xenic strains of E. histolytica trophozoites established in culture or E. histolytica positive clinical specimens (stool and amebic liver abscess aspirates). A record of the SNPs present at 16 loci out of the original 21 candidate targets was obtained for 63 of the initial 84 samples (63% of asymptomatically colonized stool samples, 80% of diarrheal stool, 73% of xenic cultures and 84% of amebic liver aspirates). The sequences in all the 63 samples both passed sequence quality control metrics and also had the required greater than 8X sequence coverage for all 16 SNPs in order to confidently identify variants.ConclusionsOur work is in agreement with previous findings of extensive diversity among E. histolytica isolates from the same geographic origin. In phylogenetic trees, only four of the 63 samples were able to group in two sets of two with greater than 50% confidence. Two SNPs in the cylicin-2 gene (EHI_080100/XM_001914351) were associated with disease (asymptomatic/diarrhea p = 0.0162 or dysentery/amebic liver abscess p = 0.0003). This study demonstrated that there are genetic differences between virulent and avirulent E. histolytica strains and that this approach has the potential to define genetic changes that influence infection outcomes.

Collaboration


Dive into the Carol A. Gilchrist's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Priya Duggal

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Clive Evans

Virginia Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oswald Crasta

Virginia Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge