Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol A. Howell is active.

Publication


Featured researches published by Carol A. Howell.


Journal of Colloid and Interface Science | 2011

Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels, and PVA/AC composite

Susan Sandeman; Vladimir M. Gun’ko; Olga M. Bakalinska; Carol A. Howell; Yishan Zheng; Mykola T. Kartel; Gary Phillips; Sergey V. Mikhalovsky

The textural and adsorption characteristics of a series of activated carbons (ACs), porous poly(vinyl alcohol) (PVA) gels, and PVA/AC composites were studied using scanning electron microscopy, mercury porosimetry, adsorption of nitrogen (at 77.4 K), cationic methylene blue (MB), anionic methyl orange (MO), and Congo red (CR) from the aqueous solutions. Dye-PVA-AC-water interactions were modeled using the semiempirical quantum chemical method PM6. The percentage of dye removed (C(rem)) by the ACs was close to 100% at an equilibrium concentration (C(eq)) of less than 0.1 mM but decreased with increasing dye concentration. This decrease was stronger at C(eq) of less than 1 mM, and C(rem) was less than 50% at a C(eq) of 10-20 mM. For PVA and the PVA/AC composite containing C-7, the C(rem) values were minimal (<75%). The free energy distribution functions (f(ΔG)) for dye adsorption include one to three peaks in the -ΔG range of 1-60 kJ/mol, depending on the dye concentration range used and the spatial, charge symmetry of the hydrated dye ions and the structural characteristics of the adsorbents. The f(ΔG) shape is most complex for MO with the most asymmetrical geometry and charge distribution and adsorbed at concentrations over a large C(eq) range. For symmetrical CR ions, adsorbed over a narrow C(eq) range, the f(ΔG) plot includes mainly one narrow peak. MB has a minimal molecular size at a planar geometry (especially important for effective adsorption in slit-shaped pores) which explains its greater adsorptive capacity over that of MO or CR. Dye adsorption was greatest for ACs with the largest surface area but as molecular size increases adsorption depends to a greater extent on the pore size distribution in addition to total and nanopore surface areas and pore volume.


Biomaterials | 2010

Mesoporous carbide-derived carbon for cytokine removal from blood plasma

Saujanya Yachamaneni; Gleb Yushin; Sun-Hwa Yeon; Yury Gogotsi; Carol A. Howell; Susan Sandeman; Gary Phillips; Sergey V. Mikhalovsky

Porous carbons can be used for purification of bio-fluids due to their excellent biocompatibility with blood. Since the ability to adsorb a range of inflammatory cytokines within the shortest possible time is crucial to stop the progression of sepsis, the improvement of the adsorption rate is a key factor to achieving efficient removal of cytokines. Here, we demonstrate the effect of synthesis temperatures (from 600 degrees C to 1200 degrees C), carbon particle sizes (from below 35 microm to 300 microm), and annealing conditions (Ar, NH(3), H(2), Cl(2), and vacuum annealing) that determine the surface chemistry, on the ability of carbide-derived carbons (CDCs) to remove cytokines TNF-alpha, IL-6, and IL-1 beta from blood plasma. Optimization of CDC processing and structure leads to up to two orders of magnitude increase in the adsorption rate. Mesoporous CDCs that were produced at 800 degrees C from Ti(2)AlC with the precursor particle size of <35 microm and annealed in NH(3), displayed complete removal of large molecules of TNF-alpha in less than an hour, with >85% and >95% TNF-alpha removal in 5 and 30 min, respectively. This is a very significant improvement compared to the previously published results for CDC (90% TNF-alpha removal after 1h) and activated carbons. Smaller interleukin IL-6 and IL-1 beta molecules can be completely removed within 5 min. These differences in adsorption rates show that carbons with controlled porosity can also be used for separation of protein molecules.


Biomaterials | 2008

Inflammatory cytokine removal by an activated carbon device in a flowing system

Susan Sandeman; Carol A. Howell; Sergey V. Mikhalovsky; Gary Phillips; J. Graham Davies; Stephen Robert Tennison; Anthony Paul Rawlinson; Oleksaudr P. Kozynchenko

A prototype in-line filtration/adsorption device has been developed using novel synthetic pyrolysed carbon monoliths with controlled mesoporous domains of 2-50nm. Porosity was characterized by SEM and porosimetry. Removal of inflammatory cytokines TNF, IL-6, IL-1beta and IL-8 was assessed by filtering cytokine spiked human plasma through the walls of the carbon modules under pressure. The effect of carbon filtration on plasma clotting response and total plasma protein concentration was also assessed. Significant removal of the cytokines IL-6, IL-1beta and IL-8 was observed. Initially marked TNF removal diminished over time. The coagulation studies indicated that the carbon device does not exacerbate the propensity of blood plasma to clot. The total plasma protein concentration remained constant. The device offers a broader approach to the treatment of systemic inflammatory response syndrome (SIRS) by the removal of inflammatory mediators central to its progression.


Advanced Healthcare Materials | 2012

Hierarchical porous carbide-derived carbons for the removal of cytokines from blood plasma.

Volker Presser; Sun-Hwa Yeon; Cekdar Vakifahmetoglu; Carol A. Howell; Susan Sandeman; Paolo Colombo; Sergey V. Mikhalovsky; Yury Gogotsi

Series of silicon carbonitride ceramics are utilized to obtain hierarchically porous carbide-derived carbons (CDCs) for cytokine removal. The removal rate of TNF-α and IL-6, as two examples of pro- and anti-inflammatory cytokines, is proportional to the surface area of pores larger than the size of the protein molecule


Biomaterials | 2009

The in vitro corneal biocompatibility of hydroxyapatite coated carbon mesh

Susan Sandeman; Hannah Jeffery; Carol A. Howell; Martin Smith; Sergey V. Mikhalovsky

The purpose of this study was to consider the use of a hydroxyapatite (HA) coated porous carbon matrix as a synthetic dental laminate substitute in osteo-odonto-keratoprosthetic (OOKP) design. 3 types of carbon meshes were coated with HA by sonoelectrochemical deposition. The materials were characterised by scanning electron microscopy (SEM) and HA deposition was characterised by elemental analysis and X-ray diffractometry (XRD). In vitro assays were carried out to quantify the effects of HA coating on human keratocyte adhesion. Cellular cytokine production was used to assess inflammatory potential. HA coating significantly increased keratocyte adhesion to the carbon matrix (p<0.01). The materials did not induce excessive cytokine production by the adherent keratocytes. In addition, the matrices themselves adsorbed significant levels of the cytokine IL-8 (p<0.05). The results indicate that HA coated carbon matrices provide a suitable environment to enhance in-growth of corneal cells without inducing further inflammation. The materials may also suppress excessive inflammation by adsorption of the cytokine IL-8 into the porous, internal carbon structure.


Biomaterials | 2015

Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen

Ganesh Ingavle; Les Baillie; Yishan Zheng; Elzbieta K. Lis; Irina N. Savina; Carol A. Howell; Sergey V. Mikhalovsky; Susan Sandeman

Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0.05) decreased relative to the amount of PA remained in the solution after passing through unmodified as well as protein A modified poly(AAm-AGE) cryogel columns, indicates efficient PA removal from spiked PBS over 60 min of circulation. The high adsorption capacity towards anthrax toxin PA of the cryogel adsorbents indicated potential application of these materials for treatment of Bacillus anthracis infection.


Biomacromolecules | 2011

Activation-dependent adsorption of cytokines and toxins related to liver failure to carbon beads.

Carla Tripisciano; Oleksandr P. Kozynchenko; Ingrid Linsberger; Gary Phillips; Carol A. Howell; Susan Sandeman; S.R. Tennison; Sergey V. Mikhalovsky; Viktoria Weber; Dieter Falkenhagen

In the course of severe pathological conditions, such as acute liver failure and sepsis, toxic metabolites and mediators of inflammation are released into the patients circulation. One option for the supportive treatment of these conditions is plasmapheresis, in which plasma, after being separated from the cellular components of the blood, is cleansed by adsorption of harmful molecules on polymers or activated carbon. In this work, the adsorption characteristics of activated carbon beads with levels of activation ranging from 0 to 86% were assessed for both hydrophobic compounds accumulating in liver failure (bilirubin, cholic acid, phenol and tryptophan) and cytokines (tumor necrosis factor α and interleukin-6). Progressive activation resulted in significant gradual reduction of both bulk density and mean particle size, in an increase in the specific surface area, and to changes in pore size distribution with progressive broadening of micropores. These structural changes went hand in hand with enhanced adsorption of small adsorbates, such as IL-6 and cholic acid and, to a lesser extent, also of large molecules, such as TNF-α.


ACS Applied Materials & Interfaces | 2012

Composites with macroporous poly(vinyl alcohol) cryogels with attached activated carbon microparticles with controlled accessibility of a surface

Yishan Zheng; Vladimir M. Gun’ko; Carol A. Howell; Susan Sandeman; Gary Phillips; Oleksandr P. Kozynchenko; Stephen Robert Tennison; Alexander E. Ivanov; Sergey V. Mikhalovsky

A set of glutaraldehyde (GA) cross-linked poly(vinyl alcohol)/activated carbon (PVA/GA/AC) composites prepared in the form of monolithic rods using a cryogelation technique and studied using adsorption, mercury porosimetry, scanning electron microscopy (SEM), and quantum chemistry methods display porosity similar to that of PVA/GA cryogel at a high GA content (content ratio GA/AC = 1 and GA/PVA = 0.2). GA cross-linked PVA multilayer coverage is an effective barrier for adsorption on AC particles. Variations in surface chemistry (AC initial and oxidized in air at 300 °C for 12 h) and content (14-62.5%w/w) of ACs in PVA/GA/AC composites relatively weakly affect their textural characteristics at a high GA content (specific surface area S(BET) < 120 m²/g, pore volume V(p) < 0.35 cm³/g). However, PVA/GA/AC composite rods formed with a lower concentration of GA (content ratio GA/AC = 1/6 and GA/PVA = 1/10) have significantly greater S(BET) (∼500 m²/g) and V(p) (>0.55 cm³/g) values because of improved accessibility of the AC surface. This provides better adsorption of methylene blue as a probe compound.


International Journal of Artificial Organs | 2013

Nanoporous activated carbon beads and monolithic columns as effective hemoadsorbents for inflammatory cytokines.

Carol A. Howell; Susan Sandeman; Gary Phillips; Sergey V. Mikhalovsky; Stephen Robert Tennison; Anthony Paul Rawlinson; Oleksandr P. Kozynchenko

The aim of the present study was to develop and investigate nanoporous activated carbon materials for their ability to adsorb inflammatory cytokines directly from blood, for a range of therapeutic applications, including: systemic inflammatory response syndrome (SIRS) related to sepsis, cardio-pulmonary by-pass surgery, or ischemic reperfusion injury. Building on the previously established relationship between the porous structure of beaded polymer-derived activated carbon and its capacity to adsorb inflammatory molecules, we have developed and characterized monolithic porous carbon columns produced from the same polymer precursor matrix as carbon microbeads. The monolithic columns developed were assessed for their ability to adsorb inflammatory molecules from blood in a circulating system. Preliminary findings demonstrated good removal of the inflammatory cytokines IL-8 (100% removal), IL-6 (80% removal), and TNF (51% removal) from blood. The efficiency of cleansing is dependent on the size of the adsorbed molecule and the porous structure of the monolith, highlighting their potential for use as a hemoadsorption device.


Science of The Total Environment | 2018

Investigation of rice husk derived activated carbon for removal of nitrate contamination from water

Aliya R. Satayeva; Carol A. Howell; Alina V. Korobeinyk; Jakpar Jandosov; Vassilis J. Inglezakis; Zulkhair A. Mansurov; Sergey V. Mikhalovsky

Development of porous carbons with high specific surface area (>1200mg-1) targeted at nitrate removal from aqueous solutions is investigated by chemical activation of carbonized rice husk. Potassium carbonate is used as activating and desilicating agent. The effect of post-synthetic treatment by gas phase ammoxidation with ozone/ammonia or oxidation with concentrated nitric acid followed by nitrification with urea on main physicochemical properties and on the effectiveness of the activated carbons in nitrate removal is compared with those determined for a pristine activated carbonized rice husk sample. The two-fold enhancement of nitrate removal by the urea-modified activated carbon in comparison with pristine and ammoxidated sample is in direct correlation with the development of surface basic groups.

Collaboration


Dive into the Carol A. Howell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.D.S. Gaylor

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar

J.M. Courtney

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajiv Jalan

University College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge