Carol A. Mercer
University of Cincinnati
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carol A. Mercer.
Autophagy | 2009
Carol A. Mercer; Alagammai Kaliappan; Patrick B. Dennis
Macroautophagy is an intracellular, vesicle-mediated mechanism for the sequestration and ultimate lysosomal degradation of cytoplasmic proteins, organelles and macromolecules. The macroautophagy process and many of the autophagy specific (Atg) proteins are remarkably well conserved in higher eukaryotes. In yeast, the Atg1 kinase complex includes Atg1, Atg13, Atg17, and at least four other interacting proteins, some of which are phosphorylated in a TOR-dependent manner, placing the Atg1 signaling complex downstream of a major nutrient-sensing pathway. Atg1 orthologs, including mammalian unc-51-like kinase 1 (ULK1), have been identified in higher eukaryotes and have been functionally linked to autophagy. This suggests that other components of the Atg1 complex exist in higher eukaryotes. Recently, a putative human Atg13 ortholog, FLJ20698, was identified by gapped-BLAST analysis. We show here that FLJ20698 (Atg13) is a ULK1-interacting phosphoprotein that is essential for macroautophagy. Furthermore, we identify a novel, human Atg13-interacting protein, FLJ11773, which we have termed Atg101. Atg101 is essential for autophagy and interacts with ULK1 in an Atg13-dependent manner. Additionally, we present evidence that intracellular localization of the ULK1 complex is regulated by nutrient conditions. Finally, we demonstrate that Atg101 stabilizes the expression of Atg13 in the cell, suggesting that Atg101 contributes to Atg13 function by protecting Atg13 from proteasomal degradation. Therefore, the identification of the novel protein, Atg101, and the validation of Atg13 and Atg101 as ULK1-interacting proteins, suggests an Atg1 complex is involved in the induction of macroautophagy in mammalian cells.
Cancer Research | 2007
Toni M. Robinson-Smith; Idit Isaacsohn; Carol A. Mercer; Mingfu Zhou; Nico van Rooijen; Nader Husseinzadeh; Molly M. McFarland-Mancini; Angela F. Drew
The tumor microenvironment is known to have a profound effect on tumor progression in a highly context-specific manner. We have investigated whether peritoneal inflammation plays a causative role in ovarian tumor metastasis, a poorly understood process. Implantation of human ovarian tumor cells into the ovaries of severe combined immunodeficient mice resulted in peritoneal inflammation that corresponds temporally with tumor cell dissemination from the ovaries. Enhancement of the inflammatory response with thioglycolate accelerated the development of ascites and metastases. Suppression of inflammation with acetyl salicylic acid delayed ascites development and reduced tumor implant formation. A similar prometastatic effect for inflammation was observed when tumor cells were injected directly into the peritoneum of severe combined immunodeficient mice, and in a syngeneic immunocompetent mouse model. Inflammation-modulating treatments did not affect primary tumor development or in vitro tumor cell growth. Depletion of peritoneal macrophages, but not neutrophils or natural killer cells, reduced tumor progression, as assessed by ascites formation and peritoneal metastasis. We conclude that inflammation facilitates ovarian tumor metastasis by a mechanism largely mediated by macrophages, and which may involve stromal vascular endothelial growth factor production. The confirmation of these findings in immunocompetent mice suggests relevance to human disease. Identifying the mechanisms by which macrophages contribute to tumor metastasis may facilitate the development of new therapies specifically targeting immune cell products in the tumor microenvironment.
Journal of Immunology | 2010
Molly M. McFarland-Mancini; Holly M. Funk; Andrew M. Paluch; Mingfu Zhou; Premkumar Vummidi Giridhar; Carol A. Mercer; Sara C. Kozma; Angela F. Drew
IL-6 modulates immune responses and is essential for timely wound healing. As the functions mediated by IL-6 require binding to its specific receptor, IL-6Rα, it was expected that mice lacking IL-6Rα would have the same phenotype as IL-6–deficient mice. However, although IL-6Rα–deficient mice share many of the inflammatory deficits seen in IL-6–deficient mice, they do not display the delay in wound healing. Surprisingly, mice with a combined deficit of IL-6 and IL-6Rα, or IL-6–deficient mice treated with an IL-6Rα–blocking Ab, showed improved wound healing relative to mice with IL-6 deficiency, indicating that the absence of the receptor contributed to the restoration of timely wound healing, rather than promiscuity of IL-6 with an alternate receptor. Wounds in mice lacking IL-6 showed delays in macrophage infiltration, fibrin clearance, and wound contraction that were not seen in mice lacking IL-6Rα alone and were greatly reduced in mice with a combined deficit of IL-6 and IL-6Rα. MAPK activation-loop phosphorylation was elevated in wounds of IL-6Rα–deficient mice, and treatment of wounds in these mice with the MEK inhibitor U0126 resulted in a delay in wound healing suggesting that aberrant ERK activation may contribute to improved healing. These findings underscore a deeper complexity for IL-6Rα function in inflammation than has been recognized previously.
Cell Reports | 2013
Giulio Donati; Suresh Peddigari; Carol A. Mercer; George Thomas
Recently, we demonstrated that RPL5 and RPL11 act in a mutually dependent manner to inhibit Hdm2 and stabilize p53 following impaired ribosome biogenesis. Given that RPL5 and RPL11 form a preribosomal complex with noncoding 5S ribosomal RNA (rRNA) and the three have been implicated in the p53 response, we reasoned they may be part of an Hdm2-inhibitory complex. Here, we show that small interfering RNAs directed against 5S rRNA have no effect on total or nascent levels of the noncoding rRNA, though they prevent the reported Hdm4 inhibition of p53. To achieve efficient inhibition of 5S rRNA synthesis, we targeted TFIIIA, a specific RNA polymerase III cofactor, which, like depletion of either RPL5 or RPL11, did not induce p53. Instead, 5S rRNA acts in a dependent manner with RPL5 and RPL11 to inhibit Hdm2 and stabilize p53. Moreover, depletion of any one of the three components abolished the binding of the other two to Hdm2, explaining their common dependence. Finally, we demonstrate that the RPL5/RPL11/5S rRNA preribosomal complex is redirected from assembly into nascent 60S ribosomes to Hdm2 inhibition as a consequence of impaired ribosome biogenesis. Thus, the activation of the Hdm2-inhibitory complex is not a passive but a regulated event, whose potential role in tumor suppression has been recently noted.
Current Opinion in Genetics & Development | 2013
Teng Teng; George Thomas; Carol A. Mercer
Ribosome biogenesis and protein synthesis are two of the most energy consuming processes in a growing cell. Moreover, defects in their molecular components can alter the pattern of gene expression. Thus it is understandable that cells have developed a surveillance system to monitor the status of the translational machinery. Recent discoveries of causative mutations and deletions in genes linked to ribosome biogenesis have defined a group of similar pathologies termed ribosomopathies. Over the past decade, much has been learned regarding the relationship between growth control and ribosome biogenesis. The discovery of extra-ribosomal functions of several ribosome proteins and their regulation of p53 levels has provided a link from ribosome impairment to cell cycle regulation. Yet, evidence suggesting p53 and/or Hdm2 independent pathways also exists. In this review, we summarize recent advances in understanding the mechanisms underlying the pathologies of ribosomopathies and discuss the relationship between ribosome production and tumorigenesis.
Science Translational Medicine | 2012
Hala Elnakat Thomas; Carol A. Mercer; Larissa S. Carnevalli; Jongsun Park; Jesper B. Andersen; Elizabeth A. Conner; Kazuhiro Tanaka; Tomoo Matsutani; Akio Iwanami; Bruce J. Aronow; Liu Manway; S. Michel Maira; Snorri S. Thorgeirsson; Paul S. Mischel; George Thomas; Sara C. Kozma
Combination therapy causes gene reprogramming, autophagy, and tumor regression in a mouse model approximating human HCC. Bridging the Generation Gap Kids of every generation disdain their elders—who clearly don’t understand them and are stuck in the past. Newer is better, after all. But sometimes, a blend of the old and new may be exactly what’s needed to solve a particular problem. Thomas et al. set out to see whether the new—the phosphatidylinositol 3-kinase/mammalian target of rapamycin (mTOR) adenosine triphosphate–site competitive inhibitor BEZ235—was better than the old—the U.S. Food and Drug Administration–approved mTOR-allosteric inhibitor RAD001. What they instead found was that these two drugs worked together to treat hepatocellular carcinoma (HCC). mTOR signaling is up-regulated in about 50% of HCCs. When the authors tested two mTOR-targeting drugs, BEZ235 and RAD001, on cultured HCC cells, they unexpectedly found that the drugs acted synergistically. In a mouse model that mimics human HCC, the two drugs induced a marked regression in tumor burden through a mechanism that involved down-regulation of genes involved in autophagy—where the cell degrades its own components. In patients with HCC, dysregulation of autophagy genes correlated with poor prognosis. The authors are now taking this observation into clinical trials to determine whether it holds true in people. By working together, old and new mTOR inhibitors may provide a new therapeutic option for HCC. Hepatocellular carcinoma (HCC) affects more than half a million people worldwide and is the third most common cause of cancer deaths. Because mammalian target of rapamycin (mTOR) signaling is up-regulated in 50% of HCCs, we compared the effects of the U.S. Food and Drug Administration–approved mTOR-allosteric inhibitor, RAD001, with a new-generation phosphatidylinositol 3-kinase/mTOR adenosine triphosphate–site competitive inhibitor, BEZ235. Unexpectedly, the two drugs acted synergistically in inhibiting the proliferation of cultured HCC cells. The synergistic effect closely paralleled eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) dephosphorylation, which is implicated in the suppression of tumor cell proliferation. In a mouse model approximating human HCC, the drugs in combination, but not singly, induced a marked regression in tumor burden. However, in the tumor, BEZ235 alone was as effective as the combination in inhibiting 4E-BP1 phosphorylation, which suggests that additional target(s) may also be involved. Microarray analyses revealed a large number of genes that reverted to normal liver tissue expression in mice treated with both drugs, but not either drug alone. These analyses also revealed the down-regulation of autophagy genes in tumors compared to normal liver. Moreover, in HCC patients, altered expression of autophagy genes was associated with poor prognosis. Consistent with these findings, the drug combination had a profound effect on UNC51-like kinase 1 (ULK1) dephosphorylation and autophagy in culture, independent of 4E-BP1, and in parallel induced tumor mitophagy, a tumor suppressor process in liver. These observations have led to an investigator-initiated phase 1B-2 dose escalation trial with RAD001 combined with BEZ235 in patients with HCC and other advanced solid tumors.
Molecular Cancer Research | 2006
Tina M. Caserta; Ramakrishna Kommagani; Ziqiang Yuan; David J. Robbins; Carol A. Mercer; Madhavi P. Kadakia
p63 and p73 are members of the p53 protein family and have been shown to play an important role in cell death, development, and tumorigenesis. In particular, p63 has been shown to be involved in the maintenance of epidermal stem cells and in the stratification of the epidermis. Sonic Hedgehog (Shh) is a morphogen that has also been implicated to play a role in epithelial stem cell proliferation and in the development of organs. Recently, Shh has also been shown to play an important role in the progression of a variety of cancers. In this report, we show that p63 and p73 but not p53 overexpression induces Shh expression. In particular, p63γ and p63β (both TA and ΔN isoforms) and TAp73β isoform induce Shh. Expression of Shh was found to be significantly reduced in mouse embryo fibroblasts obtained from p63−/− mice. The naturally occurring p63 mutant TAp63γ(R279H) and the tumor suppressor protein p14ARF inhibited the TAp63γ-mediated transactivation of Shh. The region −228 to −102 bp of Shh promoter was found to be responsive to TAp63γ-induced transactivation and TAp63γ binds to regions within the Shh promoter in vivo. The results presented in this study implicate p63 in the regulation of the Shh signaling pathway. (Mol Cancer Res 2006;4(10):759–68)
Molecular and Cellular Biology | 2013
Teng Teng; Carol A. Mercer; Philip Hexley; George Thomas; Stefano Fumagalli
ABSTRACT Humans have evolved elaborate mechanisms to activate p53 in response to insults that lead to cancer, including the binding and inhibition of Hdm2 by the 60S ribosomal proteins (RPs) RPL5 and RPL11. This same mechanism appears to be activated upon impaired ribosome biogenesis, a risk factor for cancer initiation. As loss of RPL5/RPL11 abrogates ribosome biogenesis and protein synthesis to the same extent as loss of other essential 60S RPs, we reasoned the loss of RPL5 and RPL11 would induce a p53-independent cell cycle checkpoint. Unexpectedly, we found that their depletion in primary human lung fibroblasts failed to induce cell cycle arrest but strongly suppressed cell cycle progression. We show that the effects on cell cycle progression stemmed from reduced ribosome content and translational capacity, which suppressed the accumulation of cyclins at the translational level. Thus, unlike other tumor suppressors, RPL5/RPL11 play an essential role in normal cell proliferation, a function cells have evolved to rely on in lieu of a cell cycle checkpoint.
Methods in Enzymology | 2009
Patrick B. Dennis; Carol A. Mercer
The endpoint of the autophagic process is the breakdown of delivered cytoplasmic cargo in lysosomes. Therefore, assays based on degradation of cargo are of particular interest in that they can measure regulation of the entire autophagic process, including changes in cargo delivery and breakdown in the lytic compartment. Betaine homocysteine methyltransferase (BHMT) is one of many cytosolic proteins found in the mammalian autophagosome, and delivery of BHMT to the lysosome results in its proteolysis to discrete fragments under certain conditions. Making use of these observations, the GST-BHMT assay was developed as an endpoint, cargo-based autophagy assay. Using this assay as a starting point, additional cargo-based assays have been developed with the potential to measure autophagic degradation of specific subcellular compartments. Here we describe the development and validation of these assays.
Autophagy | 2008
Carol A. Mercer; Alagammai Kaliappan; Patrick B. Dennis
Cargo-based assays have proven invaluable in the study of macroautophagy in yeast and mammalian cells. Proteomic analysis of autolysosomes identified the metabolic enzyme, betaine homocysteine methyltransferase (BHMT), as a potential cargo-based, end-point marker for mammalian macroautophagy. To test whether degradation of BHMT can be used to measure macroautophagic flux in mammalian cells, we created a BHMT fusion protein (GST-BHMT) that demonstrates starvation-induced, site-specific fragmentation in a variety of cell lines. Subcellular fractionation studies show that the GST-BHMT fragment co-fractionates with vesicles containing lysosomal and autolysosomal markers. Furthermore, both pharmacological inhibitors of macroautophagy and depletion of macroautophagy-specific proteins reduce accumulation of the fragment. In the course of these studies, we observed that fragmentation of GST-BHMT did not occur in forms of the reporter with truncation or point mutations that destabilize oligomerization. Since stable oligomerization of BHMT is essential for its catalytic activity, a point mutation known to ablate BHMT activity was tested. We show that accumulation of the GST-BHMT fragment is not impaired in a catalytically inactive mutant, indicating that selective proteolysis of GST-BHMT requires stable quaternary structure independent of effects on activity. Also, the loss of fragmentation observed in the oligomerization deficient mutants does not seem to be due to a defect of sequestration and lysosomal loading, suggesting that disruption of stable quaternary structure affects the ability of a lysosomal protease to cleave the newly-delivered cargo. Finally, we propose that the cargo-based GST-BHMT assay will be a valuable addition to existing macroautophagy assays in mammalian cells.