Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol Dobson-Stone is active.

Publication


Featured researches published by Carol Dobson-Stone.


Molecular Psychiatry | 2009

Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety

Justine M. Gatt; Charles B. Nemeroff; Carol Dobson-Stone; Robert H. Paul; Richard A. Bryant; Peter R. Schofield; Evian Gordon; Andrew H. Kemp; Leanne M. Williams

Individual risk markers for depression and anxiety disorders have been identified but the explicit pathways that link genes and environment to these markers remain unknown. Here we examined the explicit interactions between the brain-derived neurotrophic factor (BDNF) Val66Met gene and early life stress (ELS) exposure in brain (amygdala–hippocampal–prefrontal gray matter volume), body (heart rate), temperament and cognition in 374 healthy European volunteers assessed for depression and anxiety symptoms. Brain imaging data were based on a subset of 89 participants. Multiple regression analysis revealed main effects of ELS for body arousal (resting heart rate, P=0.005) and symptoms (depression and anxiety, P<0.001) in the absence of main effects for BDNF. In addition, significant BDNF–ELS interactions indicated that BDNF Met carriers exposed to greater ELS have smaller hippocampal and amygdala volumes (P=0.013), heart rate elevations (P=0.0002) and a decline in working memory (P=0.022). Structural equation path modeling was used to determine if this interaction predicts anxiety and depression by mediating effects on the brain, body and cognitive measures. The combination of Met carrier status and exposure to ELS predicted reduced gray matter in hippocampus (P<0.001), and associated lateral prefrontal cortex (P<0.001) and, in turn, higher depression (P=0.005). Higher depression was associated with poorer working memory (P=0.005), and slowed response speed. The BDNF Met–ELS interaction also predicted elevated neuroticism and higher depression and anxiety by elevations in body arousal (P<0.001). In contrast, the combination of BDNF V/V genotype and ELS predicted increases in gray matter of the amygdala (P=0.003) and associated medial prefrontal cortex (P<0.001), which in turn predicted startle-elicited heart rate variability (P=0.026) and higher anxiety (P=0.026). Higher anxiety was linked to verbal memory, and to impulsivity. These effects were specific to the BDNF gene and were not evident for the related 5HTT-LPR polymorphism. Overall, these findings are consistent with the correlation of depression and anxiety, yet suggest that partially differentiated gene–brain cognition pathways to these syndromes can be identified, even in a nonclinical sample. Such findings may aid establishing an evidence base for more tailored intervention strategies.


Nature Genetics | 2001

A conserved sorting-associated protein is mutant in chorea-acanthocytosis.

Luca Rampoldi; Carol Dobson-Stone; Justin P. Rubio; Adrian Danek; Richard M. Chalmers; Nicholas W. Wood; Christine Verellen; Xavier Ferrer; Alessandro Malandrini; Gian Maria Fabrizi; Robert H. Brown; Jeffery M. Vance; Margaret A. Pericak-Vance; Gabrielle Rudolf; Sophie Carré; Elisa Alonso; Michela Manfredi; Andrea H. Németh; Anthony P. Monaco

Chorea-acanthocytosis (CHAC, MIM 200150) is an autosomal recessive neurodegenerative disorder characterized by the gradual onset of hyperkinetic movements and abnormal erythrocyte morphology (acanthocytosis). Neurological findings closely resemble those observed in Huntington disease. We identified a gene in the CHAC critical region and found 16 different mutations in individuals with chorea-acanthocytosis. CHAC encodes an evolutionarily conserved protein that is probably involved in protein sorting.


Annals of Neurology | 2001

McLeod neuroacanthocytosis: Genotype and phenotype†

Adrian Danek; Justin P. Rubio; Luca Rampoldi; Mengfatt Ho; Carol Dobson-Stone; François Tison; William A. Symmans; Matthias Oechsner; Wolfgang Kalckreuth; Julie M. Watt; Alastair J. Corbett; Hisham H. M. Hamdalla; Andrew G. Marshall; Ian Sutton; Maria Teresa Dotti; Alessandro Malandrini; Ruth H. Walker; Geoff Daniels; Anthony P. Monaco

McLeod syndrome is caused by mutations of XK, an X‐chromosomal gene of unknown function. Originally defined as a peculiar Kell blood group variant, the disease affects multiple organs, including the nervous system, but is certainly underdiagnosed. We analyzed the mutations and clinical findings of 22 affected men, aged 27 to 72 years. Fifteen different XK mutations were found, nine of which were novel, including the one of the eponymous case McLeod. Their common result is predicted absence or truncation of the XK protein. All patients showed elevated levels of muscle creatine phosphokinase, but clinical myopathy was less common. A peripheral neuropathy with areflexia was found in all but 2 patients. The central nervous system was affected in 15 patients, as obvious from the occurrence of seizures, cognitive impairment, psychopathology, and choreatic movements. Neuroimaging emphasized the particular involvement of the basal ganglia, which was also detected in 1 asymptomatic young patient. Most features develop with age, mainly after the fourth decade. The resemblance of McLeod syndrome with Huntingtons disease and with autosomal recessive chorea‐acanthocytosis suggests that the corresponding proteins—XK, huntingtin, and chorein—might belong to a common pathway, the dysfunction of which causes degeneration of the basal ganglia.


Journal of Bone and Joint Surgery-british Volume | 2004

Severity of disease and risk of malignant change in hereditary multiple exostoses: A GENOTYPE-PHENOTYPE STUDY

Daniel Porter; Lorne Lonie; Maria Fraser; Carol Dobson-Stone; Porter J; Anthony P. Monaco; A. H. R. W. Simpson

We performed a prospective genotype-phenotype study using molecular screening and clinical assessment to compare the severity of disease and the risk of sarcoma in 172 individuals (78 families) with hereditary multiple exostoses. We calculated the severity of disease including stature, number of exostoses, number of surgical procedures that were necessary, deformity and functional parameters and used molecular techniques to identify the genetic mutations in affected individuals. Each arm of the genotype-phenotype study was blind to the outcome of the other. Mutations EXT1 and EXT2 were almost equally common, and were identified in 83% of individuals. Non-parametric statistical tests were used. There was a wide variation in the severity of disease. Children under ten years of age had fewer exostoses, consistent with the known age-related penetrance of this condition. The severity of the disease did not differ significantly with gender and was very variable within any given family. The sites of mutation affected the severity of disease with patients with EXT1 mutations having a significantly worse condition than those with EXT2 mutations in three of five parameters of severity (stature, deformity and functional parameters). A single sarcoma developed in an EXT2 mutation carrier, compared with seven in EXT1 mutation carriers. There was no evidence that sarcomas arose more commonly in families in whom the disease was more severe. The sarcoma risk in EXT1 carriers is similar to the risk of breast cancer in an older population subjected to breast-screening, suggesting that a role for regular screening in patients with hereditary multiple exostoses is justifiable.


Annals of Neurology | 2010

Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease.

Agnes Luty; John B. Kwok; Carol Dobson-Stone; Clement Loy; Kirsten G. Coupland; Helena Karlström; Tomasz Sobow; Joanna Tchorzewska; Aleksandra Maruszak; Maria Barcikowska; Peter K. Panegyres; Cezary Zekanowski; William S. Brooks; Kelly L. Williams; Ian P. Blair; Karen A. Mather; Perminder S. Sachdev; Glenda M. Halliday; Peter R. Schofield

Frontotemporal lobar degeneration (FTLD) is the most common cause of early‐onset dementia. Pathological ubiquitinated inclusion bodies observed in FTLD and motor neuron disease (MND) comprise trans‐activating response element (TAR) DNA binding protein (TDP‐43) and/or fused in sarcoma (FUS) protein. Our objective was to identify the causative gene in an FTLD‐MND pedigree with no mutations in known dementia genes.


Biological Psychology | 2007

The contribution of apolipoprotein E alleles on cognitive performance and dynamic neural activity over six decades

David M. Alexander; Leanne M. Williams; Justine M. Gatt; Carol Dobson-Stone; Stacey A. Kuan; Elizabeth Todd; Peter R. Schofield; Nicholas J. Cooper; Evian Gordon

Neuroimaging shows brain-functional differences due to apolipoprotein E (APOE) polymorphisms may exist decades before the increased risk period for Alzheimers disease, but little is known about their effect on cognition and brain function in children and young adults. This study assessed 415 healthy epsilon2 and epsilon4 carriers and matched epsilon3/epsilon3 controls, spanning ages 6-65, on a range of cognitive tests. Subjects were also compared on a new dynamical measure of EEG activity during a visual working memory task using alphabetical stimuli. epsilon4 subjects had better verbal fluency compared to epsilon3, an effect that was strongest in 51-65 year-olds. No epsilon4 deficits in cognition were found. In 6-15 year-olds, there were differences in total spatio-temporal wave activity between epsilon3 and epsilon4 subjects in the theta band, approximately 200ms post-stimulus. Differences in brain function in younger epsilon4 subjects and superior verbal fluency across the entire age range suggest that the APOE epsilon4 allele is an example of antagonistic pleiotropy.


Annals of Neurology | 2004

Chorein Detection for the Diagnosis of Chorea-Acanthocytosis

Carol Dobson-Stone; Antonio Velayos-Baeza; Lea A Filippone; Sarah K Westbury; Alexander Storch; Torsten Erdmann; Stephen J Wroe; Klaus L. Leenders; Anthony E. Lang; Maria Teresa Dotti; Antonio Federico; Saidi A. Mohiddin; Lameh Fananapazir; Geoff Daniels; Adrian Danek; Anthony P. Monaco

Chorea‐acanthocytosis (ChAc) is a severe, neurodegenerative disorder that shares clinical features with Huntingtons disease and McLeod syndrome. It is caused by mutations in VPS13A, which encodes a large protein called chorein. Using antichorein antisera, we found expression of chorein in all human cells analyzed. However, chorein expression was absent or noticeably reduced in ChAc patient cells, but not McLeod syndrome and Huntingtons disease cells. This suggests that loss of chorein expression is a diagnostic feature of ChAc. Ann Neurol 2004;56:299–302


European Journal of Human Genetics | 2002

Mutational spectrum of the CHAC gene in patients with chorea-acanthocytosis

Carol Dobson-Stone; Adrian Danek; Luca Rampoldi; Richard J. Hardie; Richard M. Chalmers; Nicholas W. Wood; Saeed Bohlega; Maria Teresa Dotti; Antonio Federico; Masami Shizuka; Makoto Tanaka; Mitsunori Watanabe; Yoshio Ikeda; Mitchell F. Brin; Lev G. Goldfarb; Barbara I. Karp; Saidi A. Mohiddin; Lameh Fananapazir; Alexander Storch; Alan Fryer; Paul Maddison; Igor Sibon; Paulo Cesar Trevisol-Bittencourt; Carlos Singer; Ignacio Requena Caballero; Jan O. Aasly; Klaus Schmierer; Reinhard Dengler; Lutz Peter Hiersemenzel; Massimo Zeviani

Chorea-acanthocytosis (ChAc) is an autosomal recessive neurological disorder whose characteristic features include hyperkinetic movements and abnormal red blood cell morphology. Mutations in the CHAC gene on 9q21 were recently found to cause chorea-acanthocytosis. CHAC encodes a large, novel protein with a yeast homologue implicated in protein sorting. In this study, all 73 exons plus flanking intronic sequence in CHAC were screened for mutations by denaturing high-performance liquid chromatography in 43 probands with ChAc. We identified 57 different mutations, 54 of which have not previously been reported, in 39 probands. The novel mutations comprise 15 nonsense, 22 insertion/deletion, 15 splice-site and two missense mutations and are distributed throughout the CHAC gene. Three mutations were found in multiple families within this or our previous study. The preponderance of mutations that are predicted to cause absence of gene product is consistent with the recessive inheritance of this disease. The high proportion of splice-site mutations found is probably a reflection of the large number of exons that comprise the CHAC gene. The CHAC protein product, chorein, appears to have a certain tolerance to amino-acid substitutions since only two out of nine substitutions described here appear to be pathogenic.


Biological Psychiatry | 2013

The Brain-Derived Neurotrophic Factor Val66Met Polymorphism Predicts Response to Exposure Therapy in Posttraumatic Stress Disorder

Kim L. Felmingham; Carol Dobson-Stone; Peter R. Schofield; Gregory J. Quirk; Richard A. Bryant

BACKGROUND The most effective treatment for posttraumatic stress disorder (PTSD) is exposure therapy, which aims to facilitate extinction of conditioned fear. Recent evidence suggests that brain-derived neurotrophic factor (BDNF) facilitates extinction learning. This study assessed whether the Met-66 allele of BDNF, which results in lower activity-dependent secretion, predicts poor response to exposure therapy in PTSD. METHODS Fifty-five patients with PTSD underwent an 8-week exposure-based cognitive behavior therapy program and provided mouth swabs or saliva to extract genomic DNA to determine their BDNF Val66Met genotype (30 patients with the Val/Val BDNF allele, 25 patients with the Met-66 allele). We examined whether BDNF genotype predicted reduction in PTSD severity following exposure therapy. RESULTS Analyses revealed poorer response to exposure therapy in the PTSD patients with the Met-66 allele of BDNF compared with patients with the Val/Val allele. Pretreatment Clinician Administered PTSD Scale severity and BDNF Val66Met polymorphism predicted response to exposure therapy using hierarchical regression. CONCLUSIONS This study provides the first evidence that the BDNF Val66Met genotype predicts response to cognitive behavior therapy in PTSD and is in accord with evidence that BDNF facilitates extinction learning.


Neurology | 2007

Neurologic phenotypes associated with acanthocytosis

Ruth H. Walker; Hans H. Jung; Carol Dobson-Stone; Luca Rampoldi; Akira Sano; François Tison; Adrian Danek

The term “neuroacanthocytosis” is normally used to refer to autosomal recessive chorea–acanthocytosis and X-linked McLeod syndrome, but there are other movement disorders in which erythrocyte acanthocytosis may also be seen, such as Huntington disease-like 2 and pantothenate kinase-associated neurodegeneration. Disorders of serum lipoproteins such as Bassen–Kornzweig disease form a distinct group of neuroacanthocytosis syndromes in which ataxia is observed, but movement disorders are not seen. Genetic testing has enabled us to distinguish between these disorders, even when there are considerable similarities between phenotypes. Improved detection is important for accurate genetic counseling, for monitoring for complications, and, it is hoped, for implementing causal treatments, once these become available. As in other neurodegenerative conditions, animal models are a promising strategy for the development of such therapies.

Collaboration


Dive into the Carol Dobson-Stone's collaboration.

Top Co-Authors

Avatar

Peter R. Schofield

Neuroscience Research Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justine M. Gatt

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marianne Hallupp

Prince of Wales Medical Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge