Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol E. Green is active.

Publication


Featured researches published by Carol E. Green.


Pharmacology & Therapeutics | 1997

PREDICTION OF IN VIVO DRUG METABOLISM IN THE HUMAN LIVER FROM IN VITRO METABOLISM DATA

Takafumi Iwatsubo; Noriko Hirota; Tsuyoshi Ooie; Hiroshi Suzuki; Noriaki Shimada; Kan Chiba; Takashi Ishizaki; Carol E. Green; Charles A. Tyson; Yuichi Sugiyama

As a new approach to predicting in vivo drug metabolism in humans, scaling of in vivo metabolic clearance from in vitro data obtained using human liver microsomes or hepatocytes is described in this review, based on the large number of literature data. Successful predictions were obtained for verapamil, loxtidine (lavoltidine), diazepam, lidocaine, phenacetin and some other compounds where CLint,in vitro is comparable with CLint,in vivo. On the other hand, for some metabolic reactions, differences in CLint,in vitro and CLint,in vivo greater than 5-fold were observed. The following factors are considered to be the cause of the differences: (1) metabolism in tissues other than liver, (2) incorrect assumption of rapid equilibrium of drugs between blood and hepatocytes, (3) presence of active transport through the sinusoidal membrane, and (4) interindividual variability. Furthermore, the possibility of predicting in vivo drug metabolic clearance from results obtained using a recombinant system of human P450 isozyme was described for a model compound, YM796, where the predicted metabolic clearances obtained from the recombinant system, taking account of the content of the P450 isozyme CYP3A4 in the human microsomes, were comparable with the observed clearances using human liver microsomes containing different amounts of CYP3A4. Even in the case where the first-pass metabolism exhibits nonlinearity, it appears to be possible to predict in vivo metabolic clearance from in vitro metabolic data.


PLOS ONE | 2013

A Systematic Screen of FDA-Approved Drugs for Inhibitors of Biological Threat Agents

Peter B. Madrid; Sidharth Chopra; Ian D. Manger; Lynne Gilfillan; Tiffany R. Keepers; Amy C. Shurtleff; Carol E. Green; Lalitha V. Iyer; Holli Hutcheson Dilks; Robert A. Davey; Andrey A. Kolokoltsov; Ricardo Carrion; Jean L. Patterson; Sina Bavari; Rekha G. Panchal; Travis K. Warren; Jay Wells; Walter H. Moos; RaeLyn L. Burke; Mary J. Tanga

Background The rapid development of effective medical countermeasures against potential biological threat agents is vital. Repurposing existing drugs that may have unanticipated activities as potential countermeasures is one way to meet this important goal, since currently approved drugs already have well-established safety and pharmacokinetic profiles in patients, as well as manufacturing and distribution networks. Therefore, approved drugs could rapidly be made available for a new indication in an emergency. Methodology/Principal Findings A large systematic effort to determine whether existing drugs can be used against high containment bacterial and viral pathogens is described. We assembled and screened 1012 FDA-approved drugs for off-label broad-spectrum efficacy against Bacillus anthracis; Francisella tularensis; Coxiella burnetii; and Ebola, Marburg, and Lassa fever viruses using in vitro cell culture assays. We found a variety of hits against two or more of these biological threat pathogens, which were validated in secondary assays. As expected, antibiotic compounds were highly active against bacterial agents, but we did not identify any non-antibiotic compounds with broad-spectrum antibacterial activity. Lomefloxacin and erythromycin were found to be the most potent compounds in vivo protecting mice against Bacillus anthracis challenge. While multiple virus-specific inhibitors were identified, the most noteworthy antiviral compound identified was chloroquine, which disrupted entry and replication of two or more viruses in vitro and protected mice against Ebola virus challenge in vivo. Conclusions/Significance The feasibility of repurposing existing drugs to face novel threats is demonstrated and this represents the first effort to apply this approach to high containment bacteria and viruses.


Pharmacogenetics | 1998

A new deleted allele in the human cytochrome P450 2A6 (CYP2A6) gene found in individuals showing poor metabolic capacity to coumarin and (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride (SM-12502).

Ken-ichi Nunoya; Tsuyoshi Yokoi; Kanzo Kimura; Kazuaki Inoue; Takao Kodama; Masato Funayama; Kazuo Nagashima; Yoshihiko Funae; Carol E. Green; Moritoshi Kinoshita; Tetsuya Kamataki

The S-oxidation of (4)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride (SM-12502) and the 7-hydroxylation of coumarin are primarily catalyzed by cytochrome P450 2A6 (CYP2A6). The activities of SM-12502 S-oxidase and coumarin 7-hydroxylase were investigated with liver microsomes from 20 human individuals. Liver microsomes from individual H16 showed the lowest activities of both enzymes. The expression of CYP2A6 protein was not detectable in liver microsomes from individuals H4, H5, H7, H8, H12 and H16. CYP2A6 mRNA was hardly detectable in the liver of the individual H16. A new SacI-restriction fragment length polymorphism showing the lack of a 2.6 kb fragment was found in two of forty genomic DNA preparations from individuals H16 and No. 594, using CYP2A6 cDNA as a probe. This deletional 2.6 kb fragment was isolated from a genomic library prepared from one individuals showing normal coumarin 7-hydroxylase activity and was sequenced. This fragment contained a CYP2A6 gene region from 319 bp upstream of a putative exon 6 to a SacI site in exon 9, indicating that this region was deleted in the two individuals in this study. We also demonstrated by polymerase chain reaction analysis that the exon 8 of CYP2A6 gene was deleted in individuals H16 and No. 594. These results indicate that the reduced activity of SM-12502 S-oxidase and no activity of coumarin 7-hydroxylase are caused by the lack of CYP2A6 mRNA and CYP2A6 protein caused by the CYP2A6 gene deletion.


Pharmaceutical Research | 2000

Prediction of in vivo interaction between triazolam and erythromycin based on in vitro studies using human liver microsomes and recombinant human CYP3A4.

Shin-ichi Kanamitsu; Kiyomi Ito; Carol E. Green; Charles A. Tyson; Noriaki Shimada; Yuichi Sugiyama

AbstractPurpose. To quantitatively predict the in vivo interaction betweentriazolam and erythromycin, which involves mechanism-basedinhibition of CYP3A4, from in vitro studies using human liver microsomes(HLM) and recombinant human CYP3A4 (REC). Methods. HLM or REC was preincubated with erythromycin in thepresence of NADPH and then triazolam was added. α- and 4-hydroxy(OH) triazolam were quantified after a 3 min incubation and the kineticparameters for enzyme inactivation (kinact and K′app) were obtained.Drug-drug interaction in vivo was predicted based on aphysiologically-based pharmacokinetic (PBPK) model, using triazolam anderythromycin pharmacokinetic parameters obtained from the literature and kineticparameters for the enzyme inactivation obtained in the in vitro studies. Results. Whichever enzyme was used, triazolam metabolism was notinhibited without preincubation, even if the erythromycin concentrationwas increased. The degree of inhibition depended on preincubationtime and erythromycin concentration. The values obtained for kinactand K′app were 0.062 min−1 and 15.9 μM (α-OH, HLM), 0.055 min−1and 17.4 μM (4-OH, HLM), 0.173 min−1 and 19.1 μM (α-OH, REC),and 0.097 min−1 and 18.9 μM (4-OH, REC). Based on the kineticparameters obtained using HLM and REC, the AUCpo of triazolamwas predicted to increase 2.0- and 2.6-fold, respectively, followingoral administration of erythromycin (333 mg t.i.d. for 3 days), whichagreed well with the reported data. Conclusions. In vivo interaction between triazolam and erythromycinwas successfully predicted from in vitro data based on a PBPK modelinvolving a mechanism-based inhibition of CYP3A4.


Iubmb Life | 1999

Variation of Hepatic Methotrexate 7-Hydroxylase Activity in Animals and Humans

Shigeyuki Kitamura; Kazumi Sugihara; Keiko Nakatani; Shigeru Ohta; Toshinari Oh‐Hara; Shin-ichi Ninomiya; Carol E. Green; Charles A. Tyson

This study deals with individual and species variations in the converting activity of methotrexate (MTX) to 7‐hydroxymethotrexate in animals and humans. When MTX 7‐hydroxylase was assayed in six human liver cytosols, a 48‐fold range of intersubject variation of the activity was observed. The variations were correlated to the concentrations of aldehyde oxidase activity in human subjects assayed with benzaldehyde as a substrate. Species differences of liver MTX 7‐hydroxylase activity were also observed. The activity was highest in rabbits, followed by rats, hamsters, and monkeys but was undetectable in dogs. Strain differences of MTX 7‐hydroxylase activity based on aldehyde oxidase activity were also observed in rats and mice. The results suggest that aldehyde oxidase functions as MTX 7‐hydroxylase in livers of animals and humans, and the observed differences of MTX 7‐hydroxylase activity are due to variations in the amount of aldehyde oxidase present.


Journal of Biological Chemistry | 2012

Refinement of Structural Leads for Centrally Acting Oxime Reactivators of Phosphylated Cholinesterases

Zoran Radić; Rakesh K. Sit; Zrinka Kovarik; Suzana Berend; Edzna Garcia; Limin Zhang; Gabriel Amitai; Carol E. Green; Božica Radić; Valery V. Fokin; K. Barry Sharpless; Palmer Taylor

Background: Contemporary oxime antidotes to organophosphate poisoning cannot penetrate CNS to reactivate inhibited acetylcholinesterase. Results: Structural, in vitro optimization of ionizable hydroxyiminoacetamido amine acetylcholinesterase reactivators produced superior antidotal responses for VX-, sarin-, paraoxon-, and tabun-exposed mice. Conclusion: Ionizable hydroxyiminoacetamido amines are promising centrally active acetylcholinesterase reactivators. Significance: A mechanism-based iterative refinement of acetylcholinesterase reactivation kinetics coupled with pharmacokinetic analyses yields efficient CNS penetrating antidotes. We present a systematic structural optimization of uncharged but ionizable N-substituted 2-hydroxyiminoacetamido alkylamine reactivators of phosphylated human acetylcholinesterase (hAChE) intended to catalyze the hydrolysis of organophosphate (OP)-inhibited hAChE in the CNS. Starting with the initial lead oxime RS41A identified in our earlier study and extending to the azepine analog RS194B, reactivation rates for OP-hAChE conjugates formed by sarin, cyclosarin, VX, paraoxon, and tabun are enhanced severalfold in vitro. To analyze the mechanism of intrinsic reactivation of the OP-AChE conjugate and penetration of the blood-brain barrier, the pH dependence of the oxime and amine ionizing groups of the compounds and their nucleophilic potential were examined by UV-visible spectroscopy, 1H NMR, and oximolysis rates for acetylthiocholine and phosphoester hydrolysis. Oximolysis rates were compared in solution and on AChE conjugates and analyzed in terms of the ionization states for reactivation of the OP-conjugated AChE. In addition, toxicity and pharmacokinetic studies in mice show significantly improved CNS penetration and retention for RS194B when compared with RS41A. The enhanced intrinsic reactivity against the OP-AChE target combined with favorable pharmacokinetic properties resulted in great improvement of antidotal properties of RS194B compared with RS41A and the standard peripherally active oxime, 2-pyridinealdoxime methiodide. Improvement was particularly noticeable when pretreatment of mice with RS194B before OP exposure was combined with RS194B reactivation therapy after the OP insult.


Anesthesiology | 2014

(R,S)-Ketamine Metabolites (R,S)-norketamine and (2S,6S)-hydroxynorketamine Increase the Mammalian Target of Rapamycin Function

Rajib K. Paul; Nagendra S. Singh; Mohammed Khadeer; Ruin Moaddel; Mitesh Sanghvi; Carol E. Green; Kathleen O’Loughlin; Marc C. Torjman; Michel Bernier; Irving W. Wainer

Background:Subanesthetic doses of (R,S)-ketamine are used in the treatment of neuropathic pain and depression. In the rat, the antidepressant effects of (R,S)-ketamine are associated with increased activity and function of mammalian target of rapamycin (mTOR); however, (R,S)-ketamine is extensively metabolized and the contribution of its metabolites to increased mTOR signaling is unknown. Methods:Rats (n = 3 per time point) were given (R,S)-ketamine, (R,S)-norketamine, and (2S,6S)-hydroxynorketamine and their effect on the mTOR pathway determined after 20, 30, and 60 min. PC-12 pheochromocytoma cells (n = 3 per experiment) were treated with escalating concentrations of each compound and the impact on the mTOR pathway was determined. Results:The phosphorylation of mTOR and its downstream targets was significantly increased in rat prefrontal cortex tissue by more than ~2.5-, ~25-, and ~2-fold, respectively, in response to a 60-min postadministration of (R,S)-ketamine, (R,S)-norketamine, and (2S,6S)-hydroxynorketamine (P < 0.05, ANOVA analysis). In PC-12 pheochromocytoma cells, the test compounds activated the mTOR pathway in a concentration-dependent manner, which resulted in a significantly higher expression of serine racemase with ~2-fold increases at 0.05 nM (2S,6S)-hydroxynorketamine, 10 nM (R,S)-norketamine, and 1,000 nM (R,S)-ketamine. The potency of the effect reflected antagonistic activity of the test compounds at the &agr;7-nicotinic acetylcholine receptor. Conclusions:The data demonstrate that (R,S)-norketamine and (2S,6S)-hydroxynorketamine have potent pharmacological activity both in vitro and in vivo and contribute to the molecular effects produced by subanesthetic doses of (R,S)-ketamine. The results suggest that the determination of the mechanisms underlying the antidepressant and analgesic effects of (R,S)-ketamine requires a full study of the parent compound and its metabolites.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1999

Primary active transport of organic anions on bile canalicular membrane in humans

Kayoko Niinuma; Yukio Kato; Hiroshi Suzuki; Charles A. Tyson; Valorie Weizer; Jack E. Dabbs; Ritchie Froehlich; Carol E. Green; Yuichi Sugiyama

Biliary excretion of several anionic compounds was examined by assessing their ATP-dependent uptake in bile canalicular membrane vesicles (CMV) prepared from six human liver samples. 2, 4-Dinitrophenyl-S-glutathione (DNP-SG), leukotriene C4 (LTC4), sulfobromophthalein glutathione (BSP-SG), E3040 glucuronide (E-glu), beta-estradiol 17-(beta-D-glucuronide) (E2-17G), grepafloxacin glucuronide (GPFXG), pravastatin, BQ-123, and methotrexate, which are known to be substrates for the rat canalicular multispecific organic anion transporter, and taurocholic acid (TCA), a substrate for the bile acid transporter, were used as substrates. ATP-dependent and saturable uptake of TCA, DNP-SG, LTC4, E-glu, E2-17G, and GPFXG was observed in all human CMV preparations examined, suggesting that these compounds are excreted in the bile via a primary active transport system in humans. Primary active transport of the other substrates was also seen in some of CMV preparations but was negligible in the others. The ATP-dependent uptake of all the compounds exhibited a large inter-CMV variation, and there was a significant correlation between the uptake of glutathione conjugates (DNP-SG, LTC4, and BSP-SG) and glucuronides (E-glu, E2-17G, and GPFXG). However, there was no significant correlation between TCA and the other organic anions, implying that the transporters for TCA and for organic anions are different also in humans. When the average value for the ATP-dependent uptake by each preparation of human CMVs was compared with that of rat CMVs, the uptake of glutathione conjugates and nonconjugated anions (pravastatin, BQ-123, and methotrexate) in humans was approximately 3- to 76-fold lower than that in rats, whereas the uptake of glucuronides was similar in the two species. Thus there is a species difference in the primary active transport of organic anions across the bile canalicular membrane that is less marked for glucuronides.Biliary excretion of several anionic compounds was examined by assessing their ATP-dependent uptake in bile canalicular membrane vesicles (CMV) prepared from six human liver samples. 2,4-Dinitrophenyl- S-glutathione (DNP-SG), leukotriene C4(LTC4), sulfobromophthalein glutathione (BSP-SG), E3040 glucuronide (E-glu), β-estradiol 17-(β-d-glucuronide) (E2-17G), grepafloxacin glucuronide (GPFXG), pravastatin, BQ-123, and methotrexate, which are known to be substrates for the rat canalicular multispecific organic anion transporter, and taurocholic acid (TCA), a substrate for the bile acid transporter, were used as substrates. ATP-dependent and saturable uptake of TCA, DNP-SG, LTC4, E-glu, E2-17G, and GPFXG was observed in all human CMV preparations examined, suggesting that these compounds are excreted in the bile via a primary active transport system in humans. Primary active transport of the other substrates was also seen in some of CMV preparations but was negligible in the others. The ATP-dependent uptake of all the compounds exhibited a large inter-CMV variation, and there was a significant correlation between the uptake of glutathione conjugates (DNP-SG, LTC4, and BSP-SG) and glucuronides (E-glu, E2-17G, and GPFXG). However, there was no significant correlation between TCA and the other organic anions, implying that the transporters for TCA and for organic anions are different also in humans. When the average value for the ATP-dependent uptake by each preparation of human CMVs was compared with that of rat CMVs, the uptake of glutathione conjugates and nonconjugated anions (pravastatin, BQ-123, and methotrexate) in humans was ∼3- to 76-fold lower than that in rats, whereas the uptake of glucuronides was similar in the two species. Thus there is a species difference in the primary active transport of organic anions across the bile canalicular membrane that is less marked for glucuronides.


Journal of Pharmacy and Pharmacology | 2006

Glucuronidation of trans‐resveratrol by human liver and intestinal microsomes and UGT isoforms

Shirley S. Brill; Anna Furimsky; Mark N. Ho; Michael J. Furniss; Yi Li; Adam G. Green; Carol E. Green; Lalitha V. Iyer; Wallace W. Bradford; Izet M. Kapetanovic

Resveratrol (trans‐resveratrol, trans‐3,5,4′‐trihydroxystilbene) is a naturally occurring stilbene analogue found in high concentrations in red wine. There is considerable research interest to determine the therapeutic potential of resveratrol, as it has been shown to have tumour inhibitory and antioxidant properties. This study was performed to investigate the glucuronidation of resveratrol and possible drug interactions via glucuronidation. Two glucuronide conjugates, resveratrol 3‐O‐glucuronide and resveratrol 4′‐O‐glucuronide, were formed by human liver and intestinal microsomes. UGT1A1 and UGT1A9 were predominantly responsible for the formation of the 3‐O‐glucuronide (Km = 149 μm) and 4′‐O‐glucuronide (Km = 365 μm), respectively. The glucuronide conjugates were formed at higher levels (up to 10‐fold) by intestinal rather than liver microsomes. Resveratrol was co‐incubated with substrates of UGT1A1 (bilirubin and 7‐ethyl‐10‐hydroxycamptothecin (SN‐38)) and UGT1A9 (7‐hydroxytrifluoromethyl coumarin (7‐HFC)). No major changes were noted in bilirubin glucuronidation in the presence of resveratrol. Resveratrol significantly inhibited the glucuronidation of SN‐38 (Ki = 6.2 ± 2.1 μm) and 7‐HFC (Ki = 0.6 ± 0.2 μm). Hence, resveratrol has the potential to inhibit the glucuronidation of concomitantly administered therapeutic drugs or dietary components that are substrates of UGT1A1 and UGT1A9.


Analytical Biochemistry | 2003

Evaluation of α-cyanoesters as fluorescent substrates for examining interindividual variation in general and pyrethroid-selective esterases in human liver microsomes

Craig E. Wheelock; Åsa M. Wheelock; Rong Zhang; Jeanette E. Stok; Christophe Morisseau; Susanna E. Le Valley; Carol E. Green; Bruce D. Hammock

Carboxylesterases hydrolyze many pharmaceuticals and agrochemicals and have broad substrate selectivity, requiring a suite of substrates to measure hydrolytic profiles. To develop new esterase substrates, a series of α-cyanoesters that yield fluorescent products upon hydrolysis was evaluated for use in carboxylesterase assays. The use of these substrates as surrogates for Type II pyrethroid hydrolysis was tested. The results suggest that these novel analogs are appropriate for the development of high-throughput assays for pyrethroid hydrolase activity. A set of human liver microsomes was then used to determine the ability of these substrates to report esterase activity across a small population. Results were compared against standard esterase substrates. A number of the esterase substrates showed correlations, demonstrating the broad substrate selectivity of these enzymes. However, for several of the substrates, no correlations in hydrolysis rates were observed, suggesting that multiple carboxylesterase isozymes are responsible for the array of substrate hydrolytic activity. These new substrates were then compared against α-naphthyl acetate and 4-methylumbelliferyl acetate for their ability to detect hydrolytic activity in both one- and two-dimensional native electrophoresis gels. Cyano-2-naphthylmethyl butanoate was found to visualize more activity than either commercial substrate. These applications demonstrate the utility of these new substrates as both general and pyrethroid-selective reporters of esterase activity.

Collaboration


Dive into the Carol E. Green's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Izet M. Kapetanovic

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge