Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol Imbriano is active.

Publication


Featured researches published by Carol Imbriano.


Cell | 2003

Links between Tumor Suppressors: p53 Is Required for TGF-β Gene Responses by Cooperating with Smads

Michelangelo Cordenonsi; Sirio Dupont; Silvia Maretto; Alessandra Insinga; Carol Imbriano; Stefano Piccolo

The p53 tumor suppressor belongs to a family of proteins that sense multiple cellular inputs to regulate cell proliferation, apoptosis, and differentiation. Whether and how these functions of p53 intersect with the activity of extracellular growth factors is not understood. Here, we report that key cellular responses to TGF-beta signals rely on p53 family members. During Xenopus embryonic development, p53 promotes the activation of multiple TGF-beta target genes. Moreover, mesoderm differentiation is inhibited in p53-depleted embryos. In mammalian cells, the full transcriptional activation of the CDK inhibitor p21(WAF1) by TGF-beta requires p53. p53-deficient cells display an impaired cytostatic response to TGF-beta signals. Smad and p53 protein complexes converge on separate cis binding elements on a target promoter and synergistically activate TGF-beta induced transcription. p53 can physically interact in vivo with Smad2 in a TGF-beta-dependent fashion. The results unveil a previously unrecognized link between two primary tumor suppressor pathways in vertebrates.


Molecular and Cellular Biology | 2005

Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters.

Carol Imbriano; Aymone Gurtner; Silvia Di Agostino; Valentina Basile; Monica Gostissa; Matthias Dobbelstein; Giannino Del Sal; Giulia Piaggio; Roberto Mantovani

ABSTRACT In response to DNA damage, p53 activates G1/S blocking and apoptotic genes through sequence-specific binding. p53 also represses genes with no target site, such as those for Cdc2 and cyclin B, key regulators of the G2/M transition. Like most G2/M promoters, they rely on multiple CCAAT boxes activated by NF-Y, whose binding to DNA is temporally regulated during the cell cycle. NF-Y associates with p53 in vitro and in vivo through the αC helix of NF-YC (a subunit of NF-Y) and a region close to the tetramerization domain of p53. Chromatin immunoprecipitation experiments indicated that p53 is associated with cyclin B2, CDC25C, and Cdc2 promoters in vivo before and after DNA damage, requiring DNA-bound NF-Y. Following DNA damage, p53 is rapidly acetylated at K320 and K373 to K382, histones are deacetylated, and the release of PCAF and p300 correlates with the recruitment of histone deacetylases (HDACs)—HDAC1 before HDAC4 and HDAC5—and promoter repression. HDAC recruitment requires intact NF-Y binding sites. In transfection assays, PCAF represses cyclin B2, and a nonacetylated p53 mutant shows a complete loss of repression potential, despite its abilities to bind NF-Y and to be recruited on G2/M promoters. These data (i) detail a strategy of direct p53 repression through associations with multiple NF-Y trimers that is independent of sequence-specific binding of p53 and that requires C-terminal acetylation, (ii) suggest that p53 is a DNA damage sentinel of the G2/M transition, and (iii) delineate a new role for PCAF in cell cycle control.


Molecular and Cellular Biology | 2003

Transcriptional Activation of the Cyclin A Gene by the Architectural Transcription Factor HMGA2

Michela A. Tessari; Monica Gostissa; Sandro Altamura; Riccardo Sgarra; Alessandra Rustighi; Clio Salvagno; Giuseppina Caretti; Carol Imbriano; Roberto Mantovani; Giannino Del Sal; Vincenzo Giancotti; Guidalberto Manfioletti

ABSTRACT The HMGA2 protein belongs to the HMGA family of architectural transcription factors, which play an important role in chromatin organization. HMGA proteins are overexpressed in several experimental and human tumors and have been implicated in the process of neoplastic transformation. Hmga2 knockout results in the pygmy phenotype in mice and in a decreased growth rate of embryonic fibroblasts, thus indicating a role for HMGA2 in cell proliferation. Here we show that HMGA2 associates with the E1A-regulated transcriptional repressor p120E4F, interfering with p120E4F binding to the cyclin A promoter. Ectopic expression of HMGA2 results in the activation of the cyclin A promoter and induction of the endogenous cyclin A gene. In addition, chromatin immunoprecipitation experiments show that HMGA2 associates with the cyclin A promoter only when the gene is transcriptionally activated. These data identify the cyclin A gene as a cellular target for HMGA2 and, for the first time, suggest a mechanism for HMGA2-dependent cell cycle regulation.


Biochemical Pharmacology | 2009

Curcumin derivatives: Molecular basis of their anti-cancer activity

Valentina Basile; Erika Ferrari; Sandra Lazzari; Silvia Belluti; Francesca Pignedoli; Carol Imbriano

Curcumin, a phenolic compound from the plant Curcuma longa L., has shown a wide-spectrum of chemopreventive, antioxidant and antitumor properties. Although its promising chemotherapeutic activity, preclinical and clinical studies highlight Curcumin limited therapeutic application due to its instability in physiological conditions. To improve its stability and activity, many derivatives have been synthesized and studied, among which bis-DemethoxyCurcumin (bDMC) and diAcetylCurcumin (DAC). In this report, we show that both bDMC and DAC are more stable than Curcumin in physiological medium. To explore the mechanism of their chemotherapeutic effect, we studied their role in proliferation in the HCT116 human colon cancer cells. We correlated kinetic stability and cellular uptake data to their biological effects. Both bDMC and DAC impair correct spindles formation and induce a p53- and p21(CIP1/WAF1)-independent mitotic arrest, which is more stable and long-lasting for bDMC. A subsequent p53/p21(CIP1/WAF1)-dependent inhibition of G1 to S transition is triggered by Curcumin and DAC as a consequence of the mitotic slippage, preventing post-mitotic cells from re-entering the cell cycle. Conversely, the G1/S arrest induced by bDMC is a direct effect of the drug and concomitant to the mitotic block. Finally, we demonstrate that bDMC induces rapid DNA double-strand breaks, moving for its possible development in anti-cancer clinical applications.


Cell Cycle | 2004

Cell cycle regulation of NF-YC nuclear localization.

Mattia Frontini; Carol Imbriano; Isabella Manni; Roberto Mantovani

NF-Y is a trimeric activator with histone fold -HFM- subunits that binds to the CCAAT-box and is required for a majority of cell-cycle promoters, often in conjuction with E2Fs. In vivo binding of NF-Y is dynamic during the cell-cycle and correlates with gene activation. We performed immunofluorescence studies on endogenous, GFP- and Flag-tagged overexpressed NF-Y subunits. NF-YA, NF-YB are nuclear proteins. Unexpectedly, NF-YC localizes both in cytoplamatic and nuclear compartments and its nuclear localization is determined by the interaction with its heterodimerization partner NF-YB. Most importantly, compartmentalization is regulated during the cell cycle of serum restimulated NIH3T3 cells, accumulating in the nucleus at the onset of S phase. These data point to the control of HFM heterodimerization as an important layer of NF-Y regulation during cell-cycle progression.


Genome Research | 2013

NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors

Joseph D. Fleming; Giulio Pavesi; Paolo Benatti; Carol Imbriano; Roberto Mantovani; Kevin Struhl

NF-Y, a trimeric transcription factor (TF) composed of two histone-like subunits (NF-YB and NF-YC) and a sequence-specific subunit (NF-YA), binds to the CCAAT motif, a common promoter element. Genome-wide mapping reveals 5000-15,000 NF-Y binding sites depending on the cell type, with the NF-YA and NF-YB subunits binding asymmetrically with respect to the CCAAT motif. Despite being characterized as a proximal promoter TF, only 25% of NF-Y sites map to promoters. A comparable number of NF-Y sites are located at enhancers, many of which are tissue specific, and nearly half of the NF-Y sites are in select subclasses of HERV LTR repeats. Unlike most TFs, NF-Y can access its target DNA motif in inactive (nonmodified) or polycomb-repressed chromatin domains. Unexpectedly, NF-Y extensively colocalizes with FOS in all genomic contexts, and this often occurs in the absence of JUN and the AP-1 motif. NF-Y also coassociates with a select cluster of growth-controlling and oncogenic TFs, consistent with the abundance of CCAAT motifs in the promoters of genes overexpressed in cancer. Interestingly, NF-Y and several growth-controlling TFs bind in a stereo-specific manner, suggesting a mechanism for cooperative action at promoters and enhancers. Our results indicate that NF-Y is not merely a commonly used proximal promoter TF, but rather performs a more diverse set of biological functions, many of which are likely to involve coassociation with FOS.


Journal of Biological Chemistry | 2006

DNA Damage Promotes Histone Deacetylase 4 Nuclear Localization and Repression of G2/M Promoters, via p53 C-terminal Lysines

Valentina Basile; Roberto Mantovani; Carol Imbriano

Repression of G2/M promoters after DNA damage is an active mechanism that requires the p53 tumor suppressor. We have recently found that histone deacetylase 4 (HDAC4) is recruited on NF-Y-dependent repressed promoters. In this report, we describe the relationship between p53 and HDAC4 recruitment following DNA damage using immunofluorescence, chromatin immunoprecipitation, and transfection experiments. HDAC4 shuttles from the cytoplasm into the nucleus, following DNA damage, independently of the activation of p53 and becomes associated with promoters through a p53-dependent mechanism. The C-terminal lysines of p53, which are acetylated and methylated, are required for HDAC4 recruitment and transcriptional repression. Trichostatin treatment, but not HDAC4 functional inactivation, relieves the adriamycin-mediated repression of G2/M promoters. Our results indicate that HDAC4 is a component of the DNA damage response and that post-translational modifications of p53 are important for repression of G2/M genes.


Nucleic Acids Research | 1999

Dissection of the NF-Y transcriptional activation potential.

Alberto Silvio di; Carol Imbriano; Roberto Mantovani

NF-Y is a trimeric CCAAT-binding factor with histone fold subunits (NF-YB/NF-YC) and bipartite activation domains located on NF-YA and NF-YC. We reconstituted the NF-Y activation potential in vivo with GAL4 DBD fusions. In the GAL4-YA configuration, activation requires co-expression of the three subunits; with GAL4-YB and GAL4-YC, transfections of the histone fold partners are sufficient, provided that the Q-rich domain of NF-YC is present. Combinations of mutants indicate that the Q-rich domains of NF-YA and NF-YC are redundant in the trimeric complex. Glutamines 101 and 102 of NF-YA are required for activity. We assayed NF-Y on different promoter targets, containing single or multiple GAL4 sites: whereas on a single site NF-Y is nearly as powerful as VP16, on multiple sites neither synergistic nor additive effects are observed. NF-Y activates TATA and Inr core elements and the overall potency is in the same range as other Q-rich and Pro-rich activation domains. These results represent the first in vivo evidence of subunit interactions studies and further support the hypothesis that NF-Y is a general promoter organizer rather than a brute activator.


Nucleic Acids Research | 2008

A balance between NF-Y and p53 governs the pro- and anti-apoptotic transcriptional response

Paolo Benatti; Valentina Basile; Daniele Merico; Luca Isaia Fantoni; Enrico Tagliafico; Carol Imbriano

The transcription factor NF-Y is a trimer with histone-like subunits that binds and activates CCAAT-containing promoters. NF-Y controls the expression of several key regulators of the cell cycle. In this study, we examined the functional and molecular effects of NF-YB knockdown. Cell cycle progression is affected with a G2/M-specific depletion. This is due to the inability of activation of G2/M-specific genes, as evidenced by expression profiling, RT-PCR and ChIP data. Surprisingly, apoptosis is also observed, with Caspase 3/7/8 cleavage. A role of p53 and Bcl-2 family members is important. NF-YB inactivation is sufficient to functionally activate p53, in the absence of DNA damage. Failure to maintain a physiologic level of CCAAT-dependent transcription of anti-apoptotic genes contributes to impairment of Bax/Bcl-2 and Bax/Bcl-XL ratios. Our data highlight the importance of fine balancing the NF-Y-p53 duo for cell survival by (i) maintaining transcription of anti-apoptotic genes and (ii) preventing p53 activation that triggers the apoptotic cascade.


Journal of Medicinal Chemistry | 2011

Structure-Based Design of Potent Aromatase Inhibitors by High-Throughput Docking

Fabiana Caporuscio; Giulio Rastelli; Carol Imbriano; Alberto Del Rio

Cytochrome P450 aromatase catalyzes the conversion of androgen substrates into estrogens. Aromatase inhibitors (AIs) have been used as first-line drugs in the treatment of estrogen-dependent breast cancer in postmenopausal women. However, the search for new, more potent, and selective AIs still remains necessary to avoid the risk of possible resistances and reduce toxicity and side effects of current available drugs. The publication of a high resolution X-ray structure of human aromatase has opened the way to structure-based virtual screening to identify new small-molecule inhibitors with structural motifs different from all known AIs. In this context, a high-throughput docking protocol was set up and led to the identification of nanomolar AIs with new core structures.

Collaboration


Dive into the Carol Imbriano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valentina Basile

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Paolo Benatti

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika Ferrari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Susanna Molinari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Fiorenza Baruffaldi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Monica Saladini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Francesca Pignedoli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Antonio Musarò

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge