Carol Irving
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carol Irving.
Development | 2002
Carol Irving; Amar Malhas; Sarah Guthrie; Ivor Mason
Formation of the trochlear nerve within the anterior hindbrain provides a model system to study a simple axonal projection within the vertebrate central nervous system. We show that trochlear motor neurons are born within the isthmic organiser and also immediately posterior to it in anterior rhombomere 1. Axons of the most anterior cells follow a dorsal projection, which circumnavigates the isthmus, while those of more posterior trochlear neurons project anterodorsally to enter the isthmus. Once within the isthmus, axons form large fascicles that extend to a dorsal exit point. We investigated the possibility that the projection of trochlear axons towards the isthmus and their subsequent growth within that tissue might depend upon chemoattraction. We demonstrate that both isthmic tissue and Fgf8 protein are attractants for trochlear axons in vitro, while ectopic Fgf8 causes turning of these axons away from their normal routes in vivo. Both inhibition of FGF receptor activation and inhibition of Fgf8 function in vitro affect formation of the trochlear projection within explants in a manner consistent with a guidance function of Fgf8 during trochlear axon navigation.
Biochemistry and Cell Biology | 2000
Ivor Mason; David J. Chambers; Huma Shamim; Jennifer Walshe; Carol Irving
In this article, an adjunct to a platform presentation at the Winternational 2000 Symposium, we summarize the recent findings of this group concerning the regulation and functions of FGF8 expressed at the isthmus of the developing brain. We show that several different FGF8 isoforms, ectopically expressed in midbrain or posterior forebrain, are able to mimic the proliferative and patterning functions previously attributed to the isthmus in tissue grafting studies. Moreover, we also show that FGF8 protein is sufficient to induce an ectopic isthmic organiser (Fgf-8+, Gbx2+) in anterior midbrain. We also provide evidence that isthmic FGF8 patterns anterior hindbrain, repressing Hox-a2 expression and setting aside a territory of the brain that includes the cerebellar anlage. We show that these effects of FGF8 are likely to be mediated via FGFR1 and be modulated by the putative FGF antagonist, Sprouty2, identified using a differential display screen. Finally, we provide evidence that the onset of Fgf8 expression is regulated by En1 and that its expression at the isthmus is subsequently maintained by a specific and direct interaction between rhombomere 1 and midbrain.
Development | 2011
Kyoko Tossell; Clemens Kiecker; Andrea Wizenmann; Emily Lang; Carol Irving
The midbrain-hindbrain interface gives rise to a boundary of particular importance in CNS development as it forms a local signalling centre, the proper functioning of which is essential for the formation of tectum and cerebellum. Positioning of the mid-hindbrain boundary (MHB) within the neuroepithelium is dependent on the interface of Otx2 and Gbx2 expression domains, yet in the absence of either or both of these genes, organiser genes are still expressed, suggesting that other, as yet unknown mechanisms are also involved in MHB establishment. Here, we present evidence for a role for Notch signalling in stabilising cell lineage restriction and regulating organiser gene expression at the MHB. Experimental interference with Notch signalling in the chick embryo disrupts MHB formation, including downregulation of the organiser signal Fgf8. Ectopic activation of Notch signalling in cells of the anterior hindbrain results in an exclusion of those cells from rhombomeres 1 and 2, and in a simultaneous clustering along the anterior and posterior boundaries of this area, suggesting that Notch signalling influences cell sorting. These cells ectopically express the boundary marker Fgf3. In agreement with a role for Notch signalling in cell sorting, anterior hindbrain cells with activated Notch signalling segregate from normal cells in an aggregation assay. Finally, misexpression of the Notch modulator Lfng or the Notch ligand Ser1 across the MHB leads to a shift in boundary position and loss of restriction of Fgf8 to the MHB. We propose that differential Notch signalling stabilises the MHB through regulating cell sorting and specifying boundary cell fate.
Developmental Biology | 2011
Kyoko Tossell; Laura C. Andreae; Chloe Cudmore; Emily Lang; Uma Muthukrishnan; Andrew Lumsden; Jonathan Gilthorpe; Carol Irving
The midbrain–hindbrain boundary (MHB) acts as an organiser/signalling centre to pattern tectal and cerebellar compartments. Cells in adjacent compartments must be distinct from each other for boundary formation to occur at the interface. Here we have identified the leucine-rich repeat (LRR) neuronal 1 (Lrrn1) protein as a key regulator of this process in chick. The Lrrn family is orthologous to the Drosophila tartan/capricious (trn/caps) family. Differential expression of trn/caps promotes an affinity difference and boundary formation between adjacent compartments in a number of contexts; for example, in the wing, leg and eye imaginal discs. Here we show that Lrrn1 is expressed in midbrain cells but not in anterior hindbrain cells. Lrrn1 is down-regulated in the anterior hindbrain by the organiser signalling molecule FGF8, thereby creating a differential affinity between these two compartments. Lrrn1 is required for the formation of MHB — loss of function leads to a loss of the morphological constriction and loss of Fgf8. Cells overexpressing Lrrn1 violate the boundary and result in a loss of cell restriction between midbrain and hindbrain compartments. Lrrn1 also regulates the glycosyltransferase Lunatic Fringe, a modulator of Notch signalling, maintaining its expression in midbrain cells which is instrumental in MHB boundary formation. Thus, Lrrn1 provides a link between cell affinity/compartment segregation, and cell signalling to specify boundary cell fate.
Mechanisms of Development | 2009
Kyoko Tossell; Andrea Wizenmann; Emily Lang; Carol Irving
(Kdr), suggesting that they are hemangioblast precursors of the blood and vascular endothelial lineages. However, the preferential differentiation of PECAM positive vascular endothelial cells suggests that Pofut2 is essential for differentiation of the hematopoietic lineage. Many POFUT2 target proteins are constitutive components of ECM or associate with ECM. Among these, CCN, TSP, and ADAMTS family members are involved in ECM synthesis and remodeling. The ability of Pofut2 mutant embryos to form teratomas comprised of tissues from all three germ layer origins, suggests that defects in Pofut2 mutant embryos result from abnormalities in the remodeling or turnover of extracellular matrix, cell-matrix interaction, and/or regulation of signal pathways. Notably, Nodal, BMP4, Fgf8, and Wnt3 expression is markedly elevated and expanded in Pofut2 mutants, providing evidence that O-fucose modification of TSRs is essential for modulation of growth factor signaling during gastrulation.
Development | 2000
Carol Irving; Ivor Mason
Development | 1999
Carol Irving; Ivor Mason
Developmental Biology | 2007
Claire A. Canning; Lily Lee; Carol Irving; Ivor Mason; C. Michael Jones
Developmental Dynamics | 2004
Jennifer M. Brown; Claire Chazaud; Carol Irving
Developmental Biology | 2003
Claire A. Canning; Carol Irving; Ivor Mason