Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol J. Cardona is active.

Publication


Featured researches published by Carol J. Cardona.


PLOS ONE | 2011

Influenza-A Viruses in Ducks in Northwestern Minnesota: Fine Scale Spatial and Temporal Variation in Prevalence and Subtype Diversity

Benjamin R. Wilcox; Gregory A. Knutsen; James Berdeen; Virginia H. Goekjian; Rebecca L. Poulson; Sagar M. Goyal; Srinand Sreevatsan; Carol J. Cardona; Roy D. Berghaus; David E. Swayne; Michael J. Yabsley; David E. Stallknecht

Waterfowl from northwestern Minnesota were sampled by cloacal swabbing for Avian Influenza Virus (AIV) from July – October in 2007 and 2008. AIV was detected in 222 (9.1%) of 2,441 ducks in 2007 and in 438 (17.9%) of 2,452 ducks in 2008. Prevalence of AIV peaked in late summer. We detected 27 AIV subtypes during 2007 and 31 during 2008. Ten hemagglutinin (HA) subtypes were detected each year (i.e., H1, 3–8, and 10–12 during 2007; H1-8, 10 and 11 during 2008). All neuraminidase (NA) subtypes were detected during each year of the study. Subtype diversity varied between years and increased with prevalence into September. Predominant subtypes during 2007 (comprising ≥5% of subtype diversity) included H1N1, H3N6, H3N8, H4N6, H7N3, H10N7, and H11N9. Predominant subtypes during 2008 included H3N6, H3N8, H4N6, H4N8, H6N1, and H10N7. Additionally, within each HA subtype, the same predominant HA/NA subtype combinations were detected each year and included H1N1, H3N8, H4N6, H5N2, H6N1, H7N3, H8N4, H10N7, and H11N9. The H2N3 and H12N5 viruses also predominated within the H2 and H12 subtypes, respectively, but only were detected during a single year (H2 and H12 viruses were not detected during 2007 and 2008, respectively). Mallards were the predominant species sampled (63.7% of the total), and 531 AIV were isolated from this species (80.5% of the total isolates). Mallard data collected during both years adequately described the observed temporal and spatial prevalence from the total sample and also adequately represented subtype diversity. Juvenile mallards also were adequate in describing the temporal and spatial prevalence of AIV as well as subtype diversity.


PLOS ONE | 2011

Emergence and Genetic Variation of Neuraminidase Stalk Deletions in Avian Influenza Viruses

Jinling Li; Heinrich zu Dohna; Carol J. Cardona; Joy Miller; Tim E. Carpenter

When avian influenza viruses (AIVs) are transmitted from their reservoir hosts (wild waterfowl and shorebirds) to domestic bird species, they undergo genetic changes that have been linked to higher virulence and broader host range. Common genetic AIV modifications in viral proteins of poultry isolates are deletions in the stalk region of the neuraminidase (NA) and additions of glycosylation sites on the hemagglutinin (HA). Even though these NA deletion mutations occur in several AIV subtypes, they have not been analyzed comprehensively. In this study, 4,920 NA nucleotide sequences, 5,596 HA nucleotide and 4,702 HA amino acid sequences were analyzed to elucidate the widespread emergence of NA stalk deletions in gallinaceous hosts, the genetic polymorphism of the deletion patterns and association between the stalk deletions in NA and amino acid variants in HA. Forty-seven different NA stalk deletion patterns were identified in six NA subtypes, N1–N3 and N5–N7. An analysis that controlled for phylogenetic dependence due to shared ancestry showed that NA stalk deletions are statistically correlated with gallinaceous hosts and certain amino acid features on the HA protein. Those HA features included five glycosylation sites, one insertion and one deletion. The correlations between NA stalk deletions and HA features are HA-NA-subtype-specific. Our results demonstrate that stalk deletions in the NA proteins of AIV are relatively common. Understanding the NA stalk deletion and related HA features may be important for vaccine and drug development and could be useful in establishing effective early detection and warning systems for the poultry industry.


Journal of Virology | 2012

Suppression of the Interferon and NF-κB Responses by Severe Fever with Thrombocytopenia Syndrome Virus

Bingqian Qu; Xian Qi; Xiaodong Wu; Mifang Liang; Chuan Li; Carol J. Cardona; Wayne Xu; Fenyang Tang; Zhifeng Li; Bing Wu; Kira Powell; Marta Wegner; Dexin Li; Zheng Xing

ABSTRACT Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by high fever, thrombocytopenia, multiorgan dysfunction, and a high fatality rate between 12 and 30%. It is caused by SFTS virus (SFTSV), a novel Phlebovirus in family Bunyaviridae. Although the viral pathogenesis remains largely unknown, hemopoietic cells appear to be targeted by the virus. In this study we report that human monocytes were susceptible to SFTSV, which replicated efficiently, as shown by an immunofluorescence assay and real-time reverse transcription-PCR. We examined host responses in the infected cells and found that antiviral interferon (IFN) and IFN-inducible proteins were induced upon infection. However, our data also indicated that downregulation of key molecules such as mitochondrial antiviral signaling protein (MAVS) or weakened activation of interferon regulatory factor (IRF) and NF-κB responses may contribute to a restricted innate immunity against the infection. NSs, the nonstructural protein encoded by the S segment, suppressed the beta interferon (IFN-β) and NF-κB promoter activities, although NF-κB activation appears to facilitate SFTSV replication in human monocytes. NSs was found to be associated with TBK1 and may inhibit the activation of downstream IRF and NF-κB signaling through this interaction. Interestingly, we demonstrated that the nucleoprotein (N), also encoded by the S segment, exhibited a suppressive effect on the activation of IFN-β and NF-κB signaling as well. Infected monocytes, mainly intact and free of apoptosis, may likely be implicated in persistent viral infection, spreading the virus to the circulation and causing primary viremia. Our findings provide the first evidence in dissecting the host responses in monocytes and understanding viral pathogenesis in humans infected with a novel deadly Bunyavirus.


Emerging microbes & infections | 2012

Molecular evidence for interspecies transmission of H3N2pM/H3N2v influenza A viruses at an Ohio agricultural fair, July 2012

Andrew S. Bowman; Srinand Sreevatsan; Mary Lea Killian; Shannon L. Page; Sarah W. Nelson; Jacqueline M. Nolting; Carol J. Cardona; Richard D. Slemons

Evidence accumulating in 2011–2012 indicates that there is significant intra- and inter-species transmission of influenza A viruses at agricultural fairs, which has renewed interest in this unique human/swine interface. Six human cases of influenza A (H3N2) variant (H3N2v) virus infections were epidemiologically linked to swine exposure at fairs in the United States in 2011. In 2012, the number of H3N2v cases in the Midwest had exceeded 300 from early July to September, 2012. Prospective influenza A virus surveillance among pigs at Ohio fairs resulted in the detection of H3N2pM (H3N2 influenza A viruses containing the matrix (M) gene from the influenza A (H1N1) pdm09 virus). These H3N2pM viruses were temporally and spatially linked to several human H3N2v cases. Complete genomic analyses of these H3N2pM isolates demonstrated >99% nucleotide similarity to the H3N2v isolates recovered from human cases. Actions to mitigate the bidirectional interspecies transmission of influenza A virus between people and animals at agricultural fairs may be warranted.


Journal of Virology | 2014

Evasion of Antiviral Immunity through Sequestering of TBK1/IKKε/IRF3 into Viral Inclusion Bodies

Xiaodong Wu; Xian Qi; Bingqian Qu; Zerui Zhang; Mifang Liang; Chuan Li; Carol J. Cardona; Dexin Li; Zheng Xing

ABSTRACT Cells are equipped with pattern recognition receptors (PRRs) such as the Toll-like and RIG-I-like receptors that mount innate defenses against viruses. However, viruses have evolved multiple strategies to evade or thwart host antiviral responses. Viral inclusion bodies (IBs), which are accumulated aggregates of viral proteins, are commonly formed during the replication of some viruses in infected cells, but their role in viral immune evasion has rarely been explored. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging febrile illness caused by a novel phlebovirus in the Bunyaviridae. The SFTS viral nonstructural protein NSs can suppress host beta interferon (IFN-β) responses. NSs can form IBs in infected and transfected cells. Through interaction with tank-binding kinase 1 (TBK1), viral NSs was able to sequester the IKK complex, including IKKε and IRF3, into IBs, although NSs did not interact with IKKε or IRF3 directly. When cells were infected with influenza A virus, IRF3 was phosphorylated and active phosphorylated IRF3 (p-IRF3) was translocated into the nucleus. In the presence of NSs, IRF3 could still be phosphorylated, but p-IRF3 was trapped in cytoplasmic IBs, resulting in reduced IFN-β induction and enhanced viral replication. Sequestration of the IKK complex and active IRF3 into viral IBs through the interaction of NSs and TBK1 is a novel mechanism for viral evasion of innate immunity.


PLOS ONE | 2012

Highly pathogenic avian influenza virus among wild birds in Mongolia.

Martin Gilbert; Losolmaa Jambal; William B. Karesh; Amanda E. Fine; Enkhtuvshin Shiilegdamba; Purevtseren Dulam; Ruuragchaa Sodnomdarjaa; Khuukhenbaatar Ganzorig; Damdinjav Batchuluun; Natsagdorj Tseveenmyadag; Purevsuren Bolortuya; Carol J. Cardona; Connie Y. H. Leung; J. S. Malik Peiris; Erica Spackman; David E. Swayne; Damien O. Joly

Mongolia combines a near absence of domestic poultry, with an abundance of migratory waterbirds, to create an ideal location to study the epidemiology of highly pathogenic avian influenza virus (HPAIV) in a purely wild bird system. Here we present the findings of active and passive surveillance for HPAIV subtype H5N1 in Mongolia from 2005–2011, together with the results of five outbreak investigations. In total eight HPAIV outbreaks were confirmed in Mongolia during this period. Of these, one was detected during active surveillance employed by this project, three by active surveillance performed by Mongolian government agencies, and four through passive surveillance. A further three outbreaks were recorded in the neighbouring Tyva Republic of Russia on a lake that bisects the international border. No HPAIV was isolated (cultured) from 7,855 environmental fecal samples (primarily from ducks), or from 2,765 live, clinically healthy birds captured during active surveillance (primarily shelducks, geese and swans), while four HPAIVs were isolated from 141 clinically ill or dead birds located through active surveillance. Two low pathogenic avian influenza viruses (LPAIV) were cultured from ill or dead birds during active surveillance, while environmental feces and live healthy birds yielded 56 and 1 LPAIV respectively. All Mongolian outbreaks occurred in 2005 and 2006 (clade 2.2), or 2009 and 2010 (clade 2.3.2.1); all years in which spring HPAIV outbreaks were reported in Tibet and/or Qinghai provinces in China. The occurrence of outbreaks in areas deficient in domestic poultry is strong evidence that wild birds can carry HPAIV over at least moderate distances. However, failure to detect further outbreaks of clade 2.2 after June 2006, and clade 2.3.2.1 after June 2010 suggests that wild birds migrating to and from Mongolia may not be competent as indefinite reservoirs of HPAIV, or that HPAIV did not reach susceptible populations during our study.


Avian Diseases | 2012

Differences in Pathogenicity, Response to Vaccination, and Innate Immune Responses in Different Types of Ducks Infected with a Virulent H5N1 Highly Pathogenic Avian Influenza Virus from Vietnam

Caran Cagle; Jamie L. Wasilenko; Sean C. Adams; Carol J. Cardona; Thanh Long To; Tung T. Nguyen; Erica Spackman; David L. Suarez; Diane Smith; Eric Shepherd; Jason P. Roth; Mary J. Pantin-Jackwood

SUMMARY. In a previous study, we found clear differences in pathogenicity and response to vaccination against H5N1 highly pathogenic avian influenza (HPAI; HA clade 2.3.4) between Pekin (Anas platyrhynchos var. domestica) and Muscovy (Cairina moschata) ducks vaccinated using a commercial inactivated vaccine (Re-1). The objective of the present study was to further investigate the pathogenicity of H5N1 HPAI viruses in different species of ducks by examining clinical signs and innate immune responses to infection with a different strain of H5N1 HPAI virus (HA clade 1) in two domestic ducks, Pekin and Muscovy, and one wild-type duck, mallard (Anas platyrhynchos). Protection conferred by vaccination using the Re-1 vaccine against infection with this virus was also compared between Pekin and Muscovy ducks. Differences in pathogenicity were observed among the virus-infected ducks, as the Muscovy ducks died 2 days earlier than did the Pekin and mallard ducks, and they presented more-severe neurologic signs. Conversely, the Pekin and mallard ducks had significantly higher body temperatures at 2 days postinfection (dpi) than did the Muscovy ducks, indicating possible differences in innate immune responses. However, similar expression of innate immune-related genes was found in the spleens of virus-infected ducks at this time point. In all three duck species, there was up-regulation of IFN-&agr;, IFN-&ggr;, IL-6, CCL19, RIG-I, and MHC class I and down-regulation of MHC class II, but variable expression of IL-18 and TLR7. As in our previous study, vaccinated Muscovy ducks showed less protection against virus infection than did Pekin ducks, as evidenced by the higher mortality and higher number of Muscovy ducks shedding virus when compared to Pekin ducks. In conclusion, infection with an H5N1 HPAI virus produced a systemic infection with high mortality in all three duck species; however, the disease was more severe in Muscovy ducks, which also had a poor response to vaccination. The differences in response to virus infection could not be explained by differences in the innate immune responses between the different types of ducks when examined at 2 days dpi, and earlier time points need to be evaluated.


The FASEB Journal | 2014

Roles of viroplasm-like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus

Xiaodong Wu; Xian Qi; Mifang Liang; Chuan Li; Carol J. Cardona; Dexin Li; Zheng Xing

Severe fever with thrombocytopenia syndrome (SFTS) virus is an emerging bunyavirus that causes a hemorrhagic fever with a high mortality rate. The virus is likely tick‐borne and replicates primarily in hemopoietic cells, which may lead to disregulation of proinflammatory cytokine induction and loss of leukocytes and platelets. The viral genome contains L, M, and S segments encoding a viral RNA polymerase, glycoproteins Gn and Gc, nucleoprotein (NP), and a nonstructural S segment (NSs) protein. NSs protein is involved in the regulation of host innate immune responses and suppression of IFNβ‐promoter activities. In this article, we demonstrate that NSs protein can form viroplasm‐like structures (VLSs) in infected and transfected cells. NSs protein molecules interact with one another, interact with NP, and were associated with viral RNA in infected cells, suggesting that NSs protein may be involved in viral replication. Furthermore, we observed that NSs‐formed VLS colocalized with lipid droplets and that inhibitors of fatty acid biosynthesis decreased VLS formation or viral replication in transfected and infected cells. Finally, we have demonstrated that viral dsRNAs were also localized in VLS in infected cells, suggesting that NSs‐formed VLS may be implicated in the replication of SFTS bunyavirus. These findings identify a novel function of nonstructural NSs in SFTSV‐infected cells where it is a scaffolding component in a VLS functioning as a virus replication factory. This function is in addition to the role of NSs protein in modulating host responses that will broaden our understanding of viral pathogenesis of phleboviruses.—Wu, X., Qi, X., Liang, M., Li, C., Cardona, C. J., Li, D., Xing, Z. Roles of viroplasm‐like structures formed by nonstructural protein NSs in infection with severe fever with thrombocytopenia syndrome virus. FASEB J. 28, 2504–2516 (2014). www.fasebj.org


PLOS ONE | 2012

Distinct Regulation of Host Responses by ERK and JNK MAP Kinases in Swine Macrophages Infected with Pandemic (H1N1) 2009 Influenza Virus

Wei Gao; Wenkui Sun; Bingqian Qu; Carol J. Cardona; Kira Powell; Marta Wegner; Yi Shi; Zheng Xing

Swine influenza is an acute respiratory disease in pigs caused by swine influenza virus (SIV). Highly virulent SIV strains cause mortality of up to 10%. Importantly, pigs have long been considered “mixing vessels” that generate novel influenza viruses with pandemic potential, a constant threat to public health. Since its emergence in 2009 and subsequent pandemic spread, the pandemic (H1N1) 2009 (H1N1pdm) has been detected in pig farms, creating the risk of generating new reassortants and their possible infection of humans. Pathogenesis in SIV or H1N1pdm-infected pigs remains poorly characterized. Proinflammatory and antiviral cytokine responses are considered correlated with the intensity of clinical signs, and swine macrophages are found to be indispensible in effective clearance of SIV from pig lungs. In this study, we report a unique pattern of cytokine responses in swine macrophages infected with H1N1pdm. The roles of mitogen-activated protein (MAP) kinases in the regulation of the host responses were examined. We found that proinflammatory cytokines IL-6, IL-8, IL-10, and TNF-α were significantly induced and their induction was ERK1/2-dependent. IFN-β and IFN-inducible antiviral Mx and 2′5′-OAS were sharply induced, but the inductions were effectively abolished when ERK1/2 was inhibited. Induction of CCL5 (RANTES) was completely inhibited by inhibitors of ERK1/2 and JNK1/2, which appeared also to regulate FasL and TNF-α, critical for apoptosis in pig macrophages. We found that NFκB was activated in H1N1pdm-infected cells, but the activation was suppressed when ERK1/2 was inhibited, indicating there is cross-talk between MAP kinase and NFκB responses in pig macrophages. Our data suggest that MAP kinase may activate NFκB through the induction of RIG-1, which leads to the induction of IFN-β in swine macrophages. Understanding host responses and their underlying mechanisms may help identify venues for effective control of SIV and assist in prevention of future influenza pandemics.


Vector-borne and Zoonotic Diseases | 2010

Influenza A Viruses in Wild Birds of the Pacific Flyway, 2005–2008

Jennifer L. Siembieda; Christine K. Johnson; Carol J. Cardona; Nichole L. Anchell; Nguyet Dao; William K. Reisen; Walter M. Boyce

Avian influenza viruses (AIVs) pose a significant threat to public health, and viral subtypes circulating in natural avian reservoirs can contribute to the emergence of pathogenic influenza viruses in humans. We investigated the prevalence and distribution of AIVs in 8826 migratory and resident wild birds in North America along the Pacific flyway, which is a major north-south migration pathway that overlaps with four other flyways in Alaska providing opportunities for mixing of Eurasian and American origin influenza viruses. Overall, the prevalence of AIVs was low (1%) among the wide range of avian species tested, but we detected AIVs in 69 hunter-harvested waterfowl (Anseriformes) sampled at a national wildlife refuge in California from October 2007 to January 2008. A wide range of subtypes were detected in waterfowl with H6N1, H10N7, H7N3, and H3N5 being the most common. We suspect H6N1 was introduced or remerged in 2007 at this key wintering site for waterfowl along the Pacific Flyway. Over a 3-week period, 13 H6N1 AIVs were isolated from two northern pintails (Anas acuta), three northern shovelers (Anas clypeata), three ring-necked ducks (Aythya collaris), four American widgeon (Anas americana), and one gadwall (Anas strepera). We conclude that a diverse array of AIVs was present and that cross-species transmission was occurring among waterfowl in the central valley wetlands of California.

Collaboration


Dive into the Carol J. Cardona's collaboration.

Top Co-Authors

Avatar

Zheng Xing

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xian Qi

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Chuan Li

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Dexin Li

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Mifang Liang

Chinese Center for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge