Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol J. Pudsey is active.

Publication


Featured researches published by Carol J. Pudsey.


Climatic Change | 2003

Recent rapid regional climate warming on the Antarctic Peninsula

David G. Vaughan; Gareth J. Marshall; William M. Connolley; Claire L. Parkinson; Robert Mulvaney; Dominic A. Hodgson; John C. King; Carol J. Pudsey; John Turner

The Intergovernmental Panel on Climate Change (IPCC) confirmed that mean global warming was 0.6 ± 0.2 °C during the 20th century and cited anthropogenic increases in greenhouse gases as the likely cause of temperature rise in the last 50 years. But this mean value conceals the substantial complexity of observed climate change, which is seasonally- and diurnally-biased, decadally-variable and geographically patchy. In particular, over the last 50 years three high-latitude areas have undergone recent rapid regional (RRR) warming, which was substantially more rapid than the global mean. However, each RRR warming occupies a different climatic regime and may have an entirely different underlying cause. We discuss the significance of RRR warming in one area, the Antarctic Peninsula. Here warming was much more rapid than in the rest of Antarctica where it was not significantly different to the global mean. We highlight climate proxies that appear to show that RRR warming on the Antarctic Peninsula is unprecedented over the last two millennia, and so unlikely to be a natural mode of variability. So while the station records do not indicate a ubiquitous polar amplification of global warming, the RRR warming on the Antarctic Peninsula might be a regional amplification of such warming. This, however, remains unproven since we cannot yet be sure what mechanism leads to such an amplification. We discuss several possible candidate mechanisms: changing oceanographic or changing atmospheric circulation, or a regional air-sea-ice feedback amplifying greenhouse warming. We can show that atmospheric warming and reduction in sea-ice duration coincide in a small area on the west of the Antarctic Peninsula, but here we cannot yet distinguish cause and effect. Thus for the present we cannot determine which process is the probable cause of RRR warming on the Antarctic Peninsula and until the mechanism initiating and sustaining the RRR warming is understood, and is convincingly reproduced in climate models, we lack a sound basis for predicting climate change in this region over the coming century.


Geophysical Research Letters | 2002

Evolution of subglacial bedforms along a paleo-ice stream, Antarctic Peninsula continental shelf

Colm Ó Cofaigh; Carol J. Pudsey; Julian A. Dowdeswell; Peter Morris

Geophysical data from the Antarctic Peninsula continental shelf reveal streamlined subglacial bedforms in a cross-shelf trough. Bedforms exhibit progressive elongation with distance along the trough, and record flow of a paleo-ice stream from the Antarctic Peninsula Ice Sheet during the last glacial maximum. Downflow evolution of the bedforms indicates increasing flow velocities as the ice stream traversed the shelf. This, in turn, is related to a transition from crystalline bedrock on the inner shelf to a soft sedimentary substrate on the outer shelf. Although streaming flow operated across both substrates, the highest flow velocities occurred over the soft bed. Spatial variation in the inferred nature of fast-flow, from sliding to subglacial sediment deformation and/or ploughing, was also lithologically controlled. These data highlight the control of subglacial geology on ice-stream dynamics in the geological record and demonstrate a direct relationship between the formation of streamlined subglacial bedforms and paleo-ice streams.


Geology | 2004

Thickness and extent of the subglacial till layer beneath an Antarctic paleo–ice stream

Julian A. Dowdeswell; Colm Ó Cofaigh; Carol J. Pudsey

Fast-flowing ice streams and outlet glaciers currently account for as much as 90% of the discharge from the Antarctic and Greenland Ice Sheets. Although the deformation of subglacial material has been proposed as the mechanism for this rapid motion, such sediment is usually hidden under several kilometers of ice. Marine-geophysical records have allowed reconstruction of the three-dimensional thickness of the sedimentary bed beneath a large Antarctic paleo-ice stream for the first time. Fast flow is indicated by streamlined seafloor lineations that form the surface of a layer of low shear strength, unsorted sediment, averaging 4.6 m thick. Rapid motion of the paleo-ice stream was a result of subglacial deformation within this layer.


Geological Society, London, Memoirs | 2002

Bottom currents, contourites and deep-sea sediment drifts: current state-of-the-art

Dorrik A. V. Stow; Jean-Claude Faugères; John A. Howe; Carol J. Pudsey; Adriano R. Viana

Abstract This paper provides both an introduction to and summary for the Atlas of Contourite Systems that has been compiled as part of the International Geological Correlation Project - IGCP 432. Following the seminal works of George Wust on the physical oceanography of bottom currents, and Charley Hollister on contourite sediments, a series of significant advances have been made over the past few decades. While accepting that ideas and terms must remain flexible as our knowledge base continues to increase, we present a consensus view on terminology and definitions of bottom currents, contourites and drifts. Both thermohaline and wind-driven circulation, influenced by Coriolis Force and molded by topography, contribute to the oceanic system of bottom currents. These semi-permanent currents show significant variability in time and space, marked by periodic benthic storm events in areas of high surface kinetic energy. Six different drift types are recognized in the ocean basins and margins at depths greater than about 300 m: (i) contourite sheet drifts; (ii) elongate mounded drifts; (iii) channel related drifts; (iv) confined drifts; (v) infill drifts; and (vi) modified drift-turbidite systems. In addition to this overall geometry, their chief seismic characteristics include: a uniform reflector pattern that reflects long-term stability, drift-wide erosional discontinuities caused by periodic changes in bottom current regime, and stacked broadly lenticular seismic depositional units showing oblique to downcurrent migration. At a smaller scale, a variety of seismic facies can be recognized that are here related to bottom current intensity. A model for seismic facies cyclicity (alternating transparent/reflector zones) is further elaborated, and linked to bottom current/climate change. Both erosional features and depositional bedforms are diagnostic of bottom current systems and velocities. Many different contourite facies are now known to exist, encompassing all compositional types. We propose here a Cl-5 notation for the standard contourite facies sequence, which can be interpreted in terms of fluctuation in bottom current velocity and/or sediment supply. Several proxies can be utilized to decode contourite successions in terms of current fluctuation. Gravel lag and shale chip contourites, as well as erosional discontinuities are indicative of still greater velocities. There are a small but growing number of land-based examples of fossil contourites, based on careful analysis using the recommended three-stage approach to interpretation. Debate still surrounds the recognition and interpretation of bottom current reworked turbidites.


Continental Shelf Research | 1994

Ice sheet retreat from the Antarctic Peninsula shelf

Carol J. Pudsey; Peter F. Barker; Robert D Larter

Side-scan sonar and sub-bottom acoustic profiler data and sediment cores reveal the processes that controlled sediment transport and deposition on the continental shelf of the Antarctic Peninsula Pacific margin off Anvers Island, during deglaciation over the last 11,000 years or more. Glacial flutes and striations mark the flow of low-profile ice streams draining the interior, across the middle and outer shelf. Most probably, ice sheets were grounded to the continental shelf edge along this margin during the last glacial maximum. Iceberg furrows overwrite the ice sheet record in areas between 500 and 350 m water depth, and reflect calving from a retreating ice shelf front. Cores show open marine sedimentation replacing diamicton deposition close to the grounding line during this retreat, which rapidly cleared the outer and middle shelf shortly before 11,000 years BP (from AMS14C dates on organic carbon). The shallower, scoured and largely sediment-free inner shelf cleared later, probably before 6000 years BP. Open marine sediments on the middle and outer shelf include a pelagic biogenic component and suspended sediment from modern glacier tongues, supplemented by resuspension of older sediment in shallow shelf regions (by currents and by grounded icebergs). Sedimentation is too slow to be able to fill in the concave-up profile of the continental shelf during a full interglacial, confirming the intense glacial-interglacial cyclicity of sedimentation on the continental slope inferred from seismic reflection profiles. The observed rapid deglaciation of the middle and outer shelf supports published numerical model results that the Antarctic Peninsulas narrow interior and broad continental shelf make the ice sheet sensitive to imposed eustatic sea-level change. A low-profile marine-based ice sheet over the continental shelf during glacial maximum would have made a major contribution to that sensitivity, in the early stages of deglaciation. It follows that the Antarctic Peninsula ice sheet, and probably most others, are not so sensitive today.


Geology | 2001

First survey of Antarctic sub–ice shelf sediments reveals mid-Holocene ice shelf retreat

Carol J. Pudsey; Jeff Evans

The retreat of five small Antarctic Peninsula ice shelves in the late 20th century has been related to regional (possibly anthropogenic) climate warming. We use the record of ice- rafted debris (IRD) in cores to show that the Prince Gustav Channel ice shelf also retreated in mid-Holocene time. Early and late Holocene-age sediments contain IRD derived entirely from local ice drainage basins, which fed the section of ice shelf covering each site. Core- top and mid-Holocene (5–2 ka) sediments include a wider variety of rock types, recording the drift of far-traveled icebergs, which implies seasonally open water at the sites. The period when the Prince Gustav ice shelf was absent corresponds to regional climate warming deduced from other paleoenvironmental records. We infer that the recent decay cannot be viewed as an unequivocal indicator of anthropogenic climate perturbation.


Boreas | 2003

Palaeo‐ice streams, trough mouth fans and high‐latitude continental slope sedimentation

Colm Ó Cofaigh; J. Taylor; Julian A. Dowdeswell; Carol J. Pudsey

The classical model of trough mouth fan (TMF) formation was developed in the Polar North Atlantic to explain large submarine fans situated in front of bathymetric troughs that extend across continental shelves to the shelf break. This model emphasizes the delivery of large volumes of subglacial sediment to the termini of ice streams flowing along troughs, and subsequent re-deposition of this glacigenic sediment down the continental slope via debris-flow processes. However, there is considerable variation in terms of the morphology and large-scale sediment architecture of continental slopes in front of palaeo-ice streams. This variability reflects differences in slope gradient, the relative contributions of meltwater sedimentation compared with debris-flow deposition, and sediment supply/geology of the adjacent continental shelf. TMF development is favoured under conditions of a low (<1D) slope gradient; a passive-margin tectonic setting; abundant, readily erodible sediments on the continental shelf - and thus associated high rates of sediment delivery to the shelf edge; and a wide continental shelf. The absence of large sediment fans on continental slopes in front of cross-shelf troughs should not, however, be taken to indicate the former absence of palaeo-ice streams in the geological record.


Marine Geology | 1998

Quaternary history of the Antarctic Circumpolar Current: evidence from the Scotia Sea

Carol J. Pudsey; John A. Howe

Within the Scotia Sea, the axis of the Antarctic Circumpolar Current (ACC) is geographically confined, and sediments therefore contain a record of palaeo-flow speed uncomplicated by ACC axis migration. We outline Holocene and Last Glacial Maximum (LGM) current-controlled sedimentation using data from 3.5-kHz profiles, cores and current meter moorings. Geophysical surveys show areas of erosion and deposition controlled by Neogene basement topography. Deposition occurs in mounded sediment drifts or flatter areas, where 500–1000 m of sediment overlies acoustic basement. 3.5-kHz profiles show parallel, continuous sub-bottom reflectors with highest sedimentation rates in the centre of the drifts, and reflectors converging towards marginal zones of non-deposition. Locally, on the flanks of continental blocks (e.g. South Georgia), downslope processes are dominant. The absence of mudwaves on the sediment drifts may result from the unsteadiness of ACC flow. A core transect from the ACC axis south to the boundary with the Weddell Gyre shows a southward decrease in biogenic content, controlled by the Polar Front and the spring sea-ice edge. Both these features lay farther north at LGM. The cores have been dated by relative abundance of the radiolarian Cycladophora davisiana, and by changes in the biogenic Ba content, a palaeoproductivity indicator. Sedimentation rates range from 3 to 17 cm/ka. The grain size of Holocene sediments shows a coarsening trend from south to north, consistent with strongest bottom-current flow near the ACC axis, though interpretation is complicated by the presence of biogenic grains. Year-long current meter records indicate mean speeds from 7 cm/s in the south to 12 cm/s in the north, with benthic storm frequency increasing northwards. LGM sediments are predominantly terrigenous and show a clearer northward-coarsening trend, with well-sorted silts in the northern Scotia Sea. Assuming a constant terrigenous source, this implies stronger ACC flow at the LGM, contrasting with weaker Weddell Gyre flow deduced from earlier work.


Marine Geology | 2004

Continental slope morphology and sedimentary processes at the mouth of an Antarctic palaeo-ice stream

Julian A. Dowdeswell; Colm Ó Cofaigh; Carol J. Pudsey

Abstract Continental-slope and shelf-edge morphology off Marguerite Bay, western Antarctic Peninsula, is investigated using swath-bathymetric data and parametric sub-bottom profiler records, together with sediment cores. Marguerite Bay has a well-defined cross-shelf trough, and a relatively steep continental slope. The slope beyond the trough mouth is convex in longitudinal profile, whereas to the north and south it is concave and reaches a maximum of 12°. There are no deep canyons cutting into the prograding outer shelf and slope. Instead, a series of gullies runs down the upper slope, reaching depths of >200 m south of the trough mouth but


Deep-sea Research Part I-oceanographic Research Papers | 1999

Sea-surface distribution of coccolithophores, diatoms, silicoflagellates and dinoflagellates in the South Atlantic Ocean during the late austral summer 1995

Frédérique Eynaud; Jacques Giraudeau; J.-J. Pichon; Carol J. Pudsey

The sea-surface distribution of four selected fossilizable phytoplankton groups (coccolithophores, diatoms, silicoflagellates and dinoflagellates) has been studied along a transect from Cape Town (34°S) to South Sandwich Islands (57°S) during the late austral summer. The observed distribution of these groups shows that their biogeographical distribution is significantly constrained by the water masses and associated frontal systems of the Southern Ocean. Coccolithophores are the dominant group and show cell abundances up to 51×103 cells/l down to 57°S. Three restricted areas are marked by particularly high cell densities: the continental shelf of South Africa, the area between the Sub-Tropical Convergence and the Sub-Antarctic Front, and the southern border of the Antarctic Polar Front, where the highest abundances are recorded (>650×103 cells/l). The species composition of the various assemblages representative of the four groups defines distinct biogeographical zones bounded by marked sea-surface temperature gradients. This biogeographical distribution is confirmed by factor analysis of the coccolithophore (5 factors, 85% of the total variance) and diatom and silicoflagellate (7 factors, 87.5% of the total variance) populations. When compared with the distribution pattern of siliceous fossil assemblages in surface sediments, our data show a more accurate coupling between the various water-masses of the South Atlantic Ocean and the living siliceous population.

Collaboration


Dive into the Carol J. Pudsey's collaboration.

Top Co-Authors

Avatar

Julian A. Dowdeswell

Scott Polar Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff Evans

Loughborough University

View shared research outputs
Top Co-Authors

Avatar

Robert D Larter

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar

John A. Howe

Scottish Association for Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Morris

British Antarctic Survey

View shared research outputs
Top Co-Authors

Avatar

Rex Harland

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge