Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol J. Thiele is active.

Publication


Featured researches published by Carol J. Thiele.


Oncogene | 2008

The MYCN oncogene is a direct target of miR-34a.

Jun Stephen Wei; Young K. Song; Steffen Durinck; Qing-Rong Chen; Adam Cheuk; Patricia S. Tsang; Quangeng Zhang; Carol J. Thiele; Andrew Slack; Jason M. Shohet; Javed Khan

Loss of 1p36 heterozygosity commonly occurs with MYCN amplification in neuroblastoma tumors, and both are associated with an aggressive phenotype. Database searches identified five microRNAs that map to the commonly deleted region of 1p36 and we hypothesized that the loss of one or more of these microRNAs contributes to the malignant phenotype of MYCN-amplified tumors. By bioinformatic analysis, we identified that three out of the five microRNAs target MYCN and of these miR-34a caused the most significant suppression of cell growth through increased apoptosis and decreased DNA synthesis in neuroblastoma cell lines with MYCN amplification. Quantitative RT–PCR showed that neuroblastoma tumors with 1p36 loss expressed lower level of miR-34a than those with normal copies of 1p36. Furthermore, we demonstrated that MYCN is a direct target of miR-34a. Finally, using a series of mRNA expression profiling experiments, we identified other potential direct targets of miR-34a, and pathway analysis demonstrated that miR-34a suppresses cell-cycle genes and induces several neural-related genes. This study demonstrates one important regulatory role of miR-34a in cell growth and MYCN suppression in neuroblastoma.


Cell | 1984

Enhancement of cellular src gene product associated tyrosyl kinase activity following polyoma virus infection and transformation

Joseph B. Bolen; Carol J. Thiele; Mark A. Israel; Wes Yonemoto; Leah A. Lipsich; Joan S. Brugge

We examine the interaction between polyoma-virus-encoded middle tumor antigen and the cellular src gene product, pp60c-src, using a series of monoclonal antibodies that recognize mammalian pp60c-src. Our results show that infection of mouse cells with transformation-competent strains of polyoma virus results in the stimulation of pp60c-src kinase activity severalfold over that observed in uninfected mouse cells and mouse cells infected with transformation-deficient polyoma virus. A similar degree of enhancement of pp60c-src kinase activity was found in polyoma-virus-transformed rodent cells. No differences were detected in the level of pp60c-src synthesis in polyoma-virus-infected and uninfected mouse cells or polyoma-virus-transformed and normal rodent cells. These studies demonstrate that polyoma-virus-encoded middle tumor antigen is associated with pp60c-src in lysates of polyoma-virus-infected and polyoma-virus-transformed cells and suggest a novel mechanism for the functional activation of a cellular proto-oncogene product, namely, that the interaction between middle tumor antigen and pp60c-src leads to a stimulation of pp60c-src tyrosyl kinase activity.


Cancer Research | 2006

Brain-Derived Neurotrophic Factor Activation of TrkB Induces Vascular Endothelial Growth Factor Expression via Hypoxia-Inducible Factor-1α in Neuroblastoma Cells

Katsuya Nakamura; Kelly C. Martin; Jennifer K. Jackson; Kiichiro Beppu; Chan-Wook Woo; Carol J. Thiele

The extent of angiogenesis and/or vascular endothelial growth factor (VEGF) expression in neuroblastoma tumors correlates with metastases, N-myc amplification, and poor clinical outcome. Recently, we have shown that insulin-like growth factor-I and serum-derived growth factors stimulate VEGF expression in neuroblastoma cells via induction of hypoxia-inducible factor-1alpha (HIF-1alpha). Because another marker of poor prognosis in neuroblastoma tumors is high expression of brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor, TrkB, we sought to evaluate the involvement of BDNF and TrkB in the regulation of VEGF expression. VEGF mRNA levels in neuroblastoma cells cultured in serum-free media increased after 8 to 16 hours in BDNF. BDNF induced increases in VEGF and HIF-1alpha protein, whereas HIF-1beta levels were unaffected. BDNF induced a 2- to 4-fold increase in VEGF promoter activity, which could be abrogated if the hypoxia response element in the VEGF promoter was mutated. Transfection of HIF-1alpha small interfering RNA blocked BDNF-stimulated increases in VEGF promoter activity and VEGF protein expression. The BDNF-stimulated increases in HIF-1alpha and VEGF expression required TrkB tyrosine kinase activity and were completely blocked by inhibitors of phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) pathways. These data indicate that BDNF plays a role in regulating VEGF levels in neuroblastoma cells and that targeted therapies to BDNF/TrkB, PI3K, mTOR signal transduction pathways, and/or HIF-1alpha have the potential to inhibit VEGF expression and limit neuroblastoma tumor growth.


Clinical Cancer Research | 2009

On Trk—The TrkB Signal Transduction Pathway Is an Increasingly Important Target in Cancer Biology

Carol J. Thiele; Zhijie Li; Amy E. McKee

In the beginning, Trk was an oncogene. Yet Neurotrophin-Trk signaling came to preeminence in the field of neurobiology. Now it is appreciated that Trks regulate important processes in nonneuronal cells and, in addition to their impact on tumors of neural origin, may contribute to the pathogenesis of carcinomas, myelomas, and prostate and lymphoid tumors. Although mutations and rearrangements of Trk are seen only sporadically in human cancers, such as medullary thyroid carcinoma, a number of recent studies indicate that expression of TrkB contributes to tumor pathology. In neuroblastoma, TrkA expression marks good prognosis which TrkB and Brain-derived neurotrophic factor (BDNF) expression marks poor prognosis. Activation of the BDNF/TrkB signal transduction pathway also stimulates tumor cell survival and angiogenesis and contributes to resistance to cytotoxic drugs and anoikis, enabling cells to acquire many of the characteristic features required for tumorigenesis. Small molecule inhibitors, such as Cephalons CEP-701, are in phase 1 and 2 clinical trials, and a series of AstraZeneca Trk inhibitors are poised to enter the clinic. As monotherapy, inhibitors may be effective only in tumors with activating Trk mutations. Important clinical follow-up will be the assessment of Trk inhibitors in combination with standard chemo- or radiotherapy or other signal transduction pathway inhibitors. (Clin Cancer Res 2009;15(19):5962–7)


Cancer Research | 2007

Neuroblastoma Cells Isolated from Bone Marrow Metastases Contain a Naturally Enriched Tumor-Initiating Cell

Loen M. Hansford; Amy E. McKee; Libo Zhang; Rani E. George; J. Ted Gerstle; Paul S. Thorner; Kristen M. Smith; A. Thomas Look; Herman Yeger; Freda D. Miller; Meredith S. Irwin; Carol J. Thiele; David R. Kaplan

Neuroblastoma is a heterogeneous pediatric tumor thought to arise from the embryonic neural crest. Identification of the cell responsible for propagating neuroblastomas is essential to understanding this often recurrent, rapidly progressing disease. We have isolated and characterized putative tumor-initiating cells from 16 tumors and bone marrow metastases from patients in all neuroblastoma risk groups. Dissociated cells from tumors or bone marrow grew as spheres in conditions used to culture neural crest stem cells, were capable of self-renewal, and exhibited chromosomal aberrations typical of neuroblastoma. Primary spheres from all tumor risk groups differentiated under neurogenic conditions to form neurons. Tumor spheres from low-risk tumors frequently formed large neuronal networks, whereas those from high-risk tumors rarely did. As few as 10 passaged tumor sphere cells from aggressive neuroblastoma injected orthotopically into severe combined immunodeficient/Beige mice formed large neuroblastoma tumors that metastasized to liver, spleen, contralateral adrenal and kidney, and lung. Furthermore, highly tumorigenic tumor spheres were isolated from the bone marrow of patients in clinical remission, suggesting that this population of cells may predict clinical behavior and serve as a biomarker for minimal residual disease in high-risk patients. Our data indicate that high-risk neuroblastoma contains a cell with cancer stem cell properties that is enriched in tumor-initiating capacity. These cells may serve as a model system to identify the molecular determinants of neuroblastoma and to develop new therapeutic strategies for this tumor.


Journal of Clinical Investigation | 1987

Differential protooncogene expression characterizes histopathologically indistinguishable tumors of the peripheral nervous system.

Carol J. Thiele; C McKeon; Timothy J. Triche; R A Ross; Mark A. Israel

We have found highly predictable patterns of protooncogene expression in cell lines and tumor tissue of neuroblastoma (NB), a tumor of the peripheral nervous system (PNS). These patterns make it possible to recognize two different genetically definable subgroups among histopathologically indistinguishable tumors. Additionally, we have identified a difference in neurotransmitter biosynthetic enzyme activity in these two subgroups of NB. The patterns of protooncogene expression and neurotransmitter biosynthetic enzymes suggests that these tumors arise in different cells of the PNS.


Oncogene | 1998

p27Kip1: a key mediator of retinoic acid induced growth arrest in the SMS-KCNR human neuroblastoma cell line.

Tatsuya Matsuo; Carol J. Thiele

Retinoic acid (RA) treatment of SMS–KCNR neuroblastoma (NB) cells leads to G1 growth arrest and neuronal differentiation. To investigate the molecular mechanisms by which RA alters cell growth, we analysed the expression and activity of components of the cell cycle machinery after culture in RA. Within 2 days of RA treatment and prior to the arrest of NB cells in the G1 phase of the cell cycle, there is a complete downregulation of G1 cyclin/Cdk activities. Protein levels for the G1 cyclin/Cdks were essentially unchanged during this time although there was a decrease in the steady-state levels of p67N-Myc and hyperphosphorylated Rb proteins. The Cdk inhibitors, p21Cip1 and p27Kip1 were constitutively expressed in KCNR while p15INK4B and p16INK4A were not detected. RA induced an increase in the expression of p27Kip1 but not p21Cip1. Furthermore, coincident with the decrease in kinase activity there was an increase in G1 cyclin/Cdk bound p27Kip1. These results indicate that changes in the level of p27Kip1 and its binding to G1 cyclin/Cdks may play a key role in RA induced growth arrest of NB cells.


Cancer Research | 2012

EZH2 mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3 and NGFR

Chunxi Wang; Zhihui Liu; Chan-Wook Woo; Zhijie Li; Lifeng Wang; Jun S. Wei; Victor E. Marquez; Susan E. Bates; Qihuang Jin; Javed Khan; Kai Ge; Carol J. Thiele

Neuroblastoma (NB) is the most common extracranial pediatric solid tumor with an undifferentiated status and generally poor prognosis, but the basis for these characteristics remains unknown. In this study, we show that upregulation of the Polycomb protein histone methyltransferase EZH2, which limits differentiation in many tissues, is critical to maintain the undifferentiated state and poor prognostic status of NB by epigenetic repression of multiple tumor suppressor genes. We identified this role for EZH2 by examining the regulation of CASZ1, a recently identified NB tumor suppressor gene whose ectopic restoration inhibits NB cell growth and induces differentiation. Reducing EZH2 expression by RNA interference-mediated knockdown or pharmacologic inhibiton with 3-deazaneplanocin A increased CASZ1 expression, inhibited NB cell growth, and induced neurite extension. Similarly, EZH2(-/-) mouse embryonic fibroblasts (MEF) displayed 3-fold higher levels of CASZ1 mRNA compared with EZH2(+/+) MEFs. In cells with increased expression of CASZ1, treatment with histone deacetylase (HDAC) inhibitor decreased expression of EZH2 and the Polycomb Repressor complex component SUZ12. Under steady-state conditions, H3K27me3 and PRC2 components bound to the CASZ1 gene were enriched, but this enrichment was decreased after HDAC inhibitor treatment. We determined that the tumor suppressors CLU, NGFR, and RUNX3 were also directly repressed by EZH2 like CASZ1 in NB cells. Together, our findings establish that aberrant upregulation of EZH2 in NB cells silences several tumor suppressors, which contribute to the genesis and maintenance of the undifferentiated phenotype of NB tumors.


Cancer Research | 2007

Credentialing Preclinical Pediatric Xenograft Models Using Gene Expression and Tissue Microarray Analysis

Craig C. Whiteford; Sven Bilke; Braden T. Greer; Qing-Rong Chen; Till Braunschweig; Nicola Cenacchi; Jun S. Wei; Malcolm A. Smith; Peter J. Houghton; Christopher L. Morton; C. Patrick Reynolds; Richard B. Lock; Richard Gorlick; Chand Khanna; Carol J. Thiele; Mikiko Takikita; Daniel Catchpoole; Stephen M. Hewitt; Javed Khan

Human tumor xenografts have been used extensively for rapid screening of the efficacy of anticancer drugs for the past 35 years. The selection of appropriate xenograft models for drug testing has been largely empirical and has not incorporated a similarity to the tumor type of origin at the molecular level. This study is the first comprehensive analysis of the transcriptome of a large set of pediatric xenografts, which are currently used for preclinical drug testing. Suitable models representing the tumor type of origin were identified. It was found that the characteristic expression patterns of the primary tumors were maintained in the corresponding xenografts for the majority of samples. Because a prerequisite for developing rationally designed drugs is that the target is expressed at the protein level, we developed tissue arrays from these xenografts and corroborated that high mRNA levels yielded high protein levels for two tested genes. The web database and availability of tissue arrays will allow for the rapid confirmation of the expression of potential targets at both the mRNA and the protein level for molecularly targeted agents. The database will facilitate the identification of tumor markers predictive of response to tested agents as well as the discovery of new molecular targets.


Molecular and Cellular Biology | 1988

Regulation of c-myb expression in human neuroblastoma cells during retinoic acid-induced differentiation.

Carol J. Thiele; P S Cohen; M A Israel

We detected expression of the c-myb proto-oncogene, which was initially thought to be expressed in a tissue-specific manner in cells of hematopoietic lineage, in human tissues of neuronal origin. Since the level of c-myb expression declined during fetal development, we studied the regulation of its expression in human neuroblastoma cell lines induced to differentiate by retinoic acid. The expression of c-myb declined during the maturation of neuroblastoma cells, and this change was mediated by a decrease in c-myb transcription.

Collaboration


Dive into the Carol J. Thiele's collaboration.

Top Co-Authors

Avatar

Zhihui Liu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javed Khan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuang Yan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tatsuya Matsuo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jun S. Wei

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Tan

China Medical University (PRC)

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge