Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol L. Kory is active.

Publication


Featured researches published by Carol L. Kory.


IEEE Transactions on Terahertz Science and Technology | 2011

Vacuum Electronic High Power Terahertz Sources

John H. Booske; Richard Dobbs; Colin D. Joye; Carol L. Kory; George R. Neil; Gun-Sik Park; Jaehun Park; Richard J. Temkin

Recent research and development has been incredibly successful at advancing the capabilities for vacuum electronic device (VED) sources of powerful terahertz (THz) and near-THz coherent radiation, both CW or average and pulsed. Currently, the VED source portfolio covers over 12 orders of magnitude in power (mW-to-GW) and two orders of magnitude in frequency (from <; 0.1 to >; 10 THz). Further advances are still possible and anticipated. They will be enabled by improved understanding of fundamental beam-wave interactions, electromagnetic mode competition and mode control, along with research and development of new materials, fabrication methods, cathodes, electron beam alignment and focusing, magnet technologies, THz metrology and advanced, broadband output radiation coupling techniques.


IEEE Transactions on Plasma Science | 2004

Folded waveguide traveling-wave tube sources for terahertz radiation

Sudeep Bhattacharjee; J.H. Booske; Carol L. Kory; D.W. van der Weide; S. Limbach; S. Gallagher; J. Welter; M.R. Lopez; Ronald M. Gilgenbach; R.L. Ives; M. Read; Ralu Divan; Derrick C. Mancini

Microfabricated folded waveguide traveling-wave tubes (TWTs) are potential compact sources of wide-band, high-power terahertz radiation. We present feasibility studies of an oscillator concept using an amplifier with delayed feedback. Simulations of a 560-GHz oscillator and experimental evaluation of the concept at 50 GHz are presented. Additionally, results from various fabrication methods that are under investigation, such as X-ray lithography, electroforming, and molding (LIGA), UV LIGA, and deep reactive ion etching are presented. Observations and measurements are reported on the generation of stable single-frequency oscillation states. On varying the feedback level, the oscillation changes from a stable single-frequency state at the threshold to multifrequency spectra in the overdriven state. Simulation and experimental results on amplifier characterization and dynamics of the regenerative TWT oscillator include spectral evolution and phase stability of the generated frequencies. The results of the experiment are in good agreement with the simulations.


IEEE Transactions on Electron Devices | 2005

Accurate parametric modeling of folded waveguide circuits for millimeter-wave traveling wave tubes

John H. Booske; Mark C. Converse; Carol L. Kory; Christine T. Chevalier; David A. Gallagher; K.E. Kreischer; Vernon O. Heinen; Sudeep Bhattacharjee

In this paper, results of different models are compared for calculating effective, cold-circuit (beam-free) phase velocities and interaction impedances of folded waveguide (FW) slow wave circuits for use in millimeter-wave traveling wave tubes (TWT). These parameters are needed for one-dimensional (1-D) parametric model simulations of FW traveling wave tubes (FWTWTs). The models investigated include approximate analytic expressions, equivalent circuit, three-dimensional (3-D) finite difference, and 3-D finite element. The phase velocity predictions are compared with experimental measurements of a representative FW circuit. The various model results are incorporated into the CHRISTINE1D code to obtain predictions of small signal gain in a 40-55 GHz FWTWT. Comparing simulated and measured frequency-dependent gain provides a sensitive, confirming assessment of the accuracy of the simulation tools. It is determined that the use of parametric 1-D TWT models for accurate, full band predictions of small signal gain in FWTWTs requires knowledge of phase velocity and impedance functions that are accurate to <0.5% and <10%, respectively. Saturated gain predictions, being approximately half as sensitive to these parameters, appear to require correct specification of phase velocity and interaction impedance to within /spl sim/1% and 20%, respectively. Although all models generate sufficiently accurate predictions of the interaction impedance, not all generate sufficiently accurate predictions of the effective axial phase velocity.


IEEE Transactions on Electron Devices | 1998

Accurate cold-test model of helical TWT slow-wave circuits

Carol L. Kory; James A. Dayton

Recently, a method has been established to accurately calculate cold-test data for helical slow-wave structures using the three-dimensional (3-D) electromagnetic computer code, MAFIA. Cold-test parameters have been calculated for several helical traveling-wave tube (TWT) slow-wave circuits possessing various support rod configurations, and results are presented here showing excellent agreement with experiment. The helical models include tape thickness, dielectric support shapes and material properties consistent with the actual circuits. The cold-test data from this helical model can be used as input into large-signal helical TWT interaction codes making it possible, for the first time, to design a complete TWT via computer simulation.


IEEE Transactions on Electron Devices | 2009

Microfabrication and Characterization of a Selectively Metallized W-Band Meander-Line TWT Circuit

Sean Sengele; Hongrui Jiang; J.H. Booske; Carol L. Kory; D.W. van der Weide; R.L. Ives

Vacuum electronic devices offer significant potential for increased power and performance at millimeter-wave frequencies. However, new approaches are required to reliably manufacture the miniature electromagnetic circuits used at these high frequencies. In this paper, we describe the design, fabrication, and testing of an innovative meander-line slow-wave structure for a W-band traveling-wave tube (TWT). The unique challenge of metallizing only the top of a high-aspect-ratio serpentine dielectric ridge using conventionally planar microfabrication techniques is overcome using a novel selective masking and metallization process. The procedure is demonstrated by fabricating a W-band meander-line circuit for a 10-W continuous-wave TWT. Cold-test S -parameter measurements are presented.


IEEE Transactions on Electron Devices | 1996

Three-dimensional simulation of helix traveling-wave tube cold-test characteristics using MAFIA

Carol L. Kory

The cold-test parameters including dispersion, impedance, and attenuation have been calculated for a helix traveling-wave tube (TWT) slow-wave circuit using MAFIA, the three-dimensional (3-D) electromagnetic finite-integration computer code. The helix model includes tape thickness, rectangular dielectric supports, and material properties consistent with the actual circuit. Measured cold-test data and computer-derived results for the helix circuit are presented with excellent agreement.


IEEE Transactions on Electron Devices | 1998

Computational investigation of experimental interaction impedance obtained by perturbation for helical traveling-wave tube structures

Carol L. Kory; James A. Dayton

Conventional methods used to measure the cold-test interaction impedance of helical slow-wave structures involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit. It has been shown that the difference in resonant frequency or axial phase shift between the perturbed and unperturbed circuits can be related to the interaction impedance. However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. With the advent of accurate three-dimensional (3-D) helical circuit models, these standard approximations can be fully investigated. This paper addresses the most prominent approximations made in the analysis for measured interaction impedance by Lagerstrom (1957) and investigates their accuracy using the 3-D simulation code MAFIA. It is shown that a more accurate value of interaction impedance can be obtained by using 3-D computational methods rather than performing costly and time consuming experimental cold-test measurements.


IEEE Transactions on Electron Devices | 1998

Effect of helical slow-wave circuit variations on TWT cold-test characteristics

Carol L. Kory; James A. Dayton

Recent advances in the state of the art of computer modeling offer the possibility for the first time to evaluate the effect that slow-wave structure parameter variations, such as manufacturing tolerances, have on the cold-test characteristics of helical traveling-wave tubes (TWTs). This will enable manufacturers to determine the cost effectiveness of controlling the dimensions of the component parts of the TWT, which is almost impossible to do experimentally without building a large number of tubes and controlling several parameters simultaneously. The computer code MAFIA is used in this analysis to determine the effect on dispersion and on-axis interaction impedance of several helical slow-wave circuit parameter variations, including thickness and relative dielectric constant of the support rods, tape width, and height of the metallized films deposited on the dielectric rods. Previous computer analyzes required so many approximations that accurate determinations of the effect of many relevant dimensions on tube performance were practically impossible.


Terahertz for Military and Security Applications | 2003

Development of Backward Wave Oscillators for Terahertz Applications

R. Lawrence Ives; Carol L. Kory; Michael Read; Jeff Neilson; Malcolm Caplan; Nikolai Chubun; Steve Schwartzkopf; Ron Witherspoon

Calabazas Creek Research, Inc. is funded by the National Aeronautics and Space Administration to develop advanced backward wave oscillators that incorporate energy recovery, air cooling and improved performance. An improved coupler transforms the generated RF power to a high-purity, Gaussian output mode. The construction of a 600-700 GHz BWO is currently underway with higher frequency sources in development. Simulations predict 6-8 mW of RF power over a 100 GHz bandwidth.


IEEE Transactions on Electron Devices | 1995

Simulation of cold-test parameters and RF output power for a coupled-cavity traveling-wave tube

Jeffrey D. Wilson; Carol L. Kory

Procedures have been developed which enable the accurate computation of the cold-test (absence of an electron beam) parameters and RF output power for the slow-wave circuits of coupled-cavity traveling-wave tubes (TWTs). The cold-test parameters, which consist of RF phase shift per cavity, impedance, and attenuation, are computed with the three-dimensional electromagnetic simulation code MAFIA and compared to experimental data for an existing V-band (59-64 GHz) coupled-cavity TWT. When simulated in cylindrical coordinates, the absolute average differences from experiment are only 0.3% for phase shift and 2.4% for impedance. Using the cold-test parameters calculated with MAFIA as input, the NASA Coupled-Cavity TWT Code is used to simulate the saturated RF output power of the TWT across the V-band frequency range. Taking into account the output window and coupler loss, the agreement with experiment is very good from 60-64 GHz, with the average absolute percentage difference between simulated and measured power only 3.8%. This demonstrates that the saturated RF output power of a coupled cavity TWT can be accurately simulated using cold-test parameters determined with a three dimensional electromagnetic simulation code. >

Collaboration


Dive into the Carol L. Kory's collaboration.

Top Co-Authors

Avatar

James A. Dayton

The Aerospace Corporation

View shared research outputs
Top Co-Authors

Avatar

J.H. Booske

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.W. van der Weide

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Limbach

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jeff Neilson

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sudeep Bhattacharjee

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Hongrui Jiang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

J. Welter

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge