Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol S. Lim is active.

Publication


Featured researches published by Carol S. Lim.


Therapeutic Delivery | 2013

Basics and recent advances in peptide and protein drug delivery.

Benjamin J. Bruno; Geoffrey D. Miller; Carol S. Lim

While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed.


Pharmaceutical Research | 2006

Controlling protein compartmentalization to overcome disease

James R. Davis; Mudit Kakar; Carol S. Lim

Over the past decade, considerable progress has been made to improve our understanding of the intracellular transport of proteins. Mechanisms of nuclear import and export involving classical receptors have been studied. Signal sequences required for directing a protein molecule to a specific cellular compartment have been defined. Knowledge of subcellular trafficking of proteins has also increased our understanding of diseases caused due to mislocalization of proteins. A specific protein on deviating from its native cellular compartment may result in disease due to loss of its normal functioning and aberrant activity in the “wrong” compartment. Mislocalization of proteins results in diseases that range from metabolic disorders to cancer. In this review we discuss some of the diseases caused due to mislocalization. We further focus on application of nucleocytoplasmic transport to drug delivery. Various rationales to treat diseases by exploiting intracellular transport machinery have been proposed. Although the pathways for intracellular movement of proteins have been defined, these have not been adequately utilized for management of diseases involving mislocalized proteins. This review stresses the need for designing drug delivery systems utilizing these mechanisms as this area is least exploited but offers great potential.


Cell Biochemistry and Biophysics | 1999

Intracellular localization and trafficking of steroid receptors.

Christopher T. Baumann; Carol S. Lim; Gordon L. Hager

Steroid receptors are ligand-dependent transcription factors whose cellular functions are to regulate expression of their target genes in response to specific ligand agonists and antagonists (reviewed in ref. 1). Transcriptional regulation generally occurs through the recruitment of transacting proteins to the promoters of their target genes. These proteins include basal transcription factors (TFIID, TFIIB, and so on), receptor coactivators (i.e., SRC-la, glucocorticoid receptor-interacting protein (GRIP-1)/TIF2, and AIB1), co-repressors (i.e., SMRT and N-CoR), and chromatin modification machines (i.e., SWI-SNF and GCN5/ ADA2) (reviewed in ref. 2). Steroid hormone receptors may be divided into three groups, based on their intracellular distribution in the absence of ligand. The first group, which includes the estrogen receptor (ER), is exclusively nuclear in the absence of ligand. The mineralocorticoid receptor (MR) and progesterone receptor (PR) make up the second group of receptors. In the absence of ligand, these receptors have both a nuclear and cytoplasmic component. In the presence of their respective ligands, the cytoplasmic


Aaps Pharmsci | 2002

Model system to study classical nuclear export signals

Charu Kanwal; Henan Li; Carol S. Lim

Signal-mediated protein transport through the nuclear pore complex is of considerable interest in the field of molecular pharmaceutics. Nuclear localization signals can be used to target genes/antisense delivery systems to the nucleus Studying nuclear export is useful in enhancing the expression and the efficiency of action, of these therapeutic agents. The mechanism of nuclear import has been well studied and most of the proteins participating in this mechanism have been identified. The subject of nuclear export is still in the initial stages and there is a considerable amount of uncertainty in this area. Two main export receptors identified so far are Exportin 1 (Crm1) and Calreticulin. Crm1 recognizes certain leucine-rich amino acid sequences in the proteins it exports called classical nuclear export signals. This paper describes a model system to study, identify, and establish these classical nuclear export signals using green fluorescent protein (GFP). Two putative export signals in the human progesterone receptor (PR) and the strongest nuclear export signal known (from mitogen activated protein kinase kinase [MAPKK]) were studied using this model system.


Journal of Biological Chemistry | 2011

DISRUPTION OF BCR-ABL COILED-COIL OLIGOMERIZATION BY DESIGN*

Andrew S. Dixon; Scott S. Pendley; Benjamin J. Bruno; David W. Woessner; Adrian A. Shimpi; Thomas E. Cheatham; Carol S. Lim

Oligomerization is an important regulatory mechanism for many proteins, including oncoproteins and other pathogenic proteins. The oncoprotein Bcr-Abl relies on oligomerization via its coiled coil domain for its kinase activity, suggesting that a designed coiled coil domain with enhanced binding to Bcr-Abl and reduced self-oligomerization would be therapeutically useful. Key mutations in the coiled coil domain of Bcr-Abl were identified that reduce homo-oligomerization through intermolecular charge-charge repulsion yet increase interaction with the Bcr-Abl coiled coil through additional salt bridges, resulting in an enhanced ability to disrupt the oligomeric state of Bcr-Abl. The mutations were modeled computationally to optimize the design. Assays performed in vitro confirmed the validity and functionality of the optimal mutations, which were found to exhibit reduced homo-oligomerization and increased binding to the Bcr-Abl coiled coil domain. Introduction of the mutant coiled coil into K562 cells resulted in decreased phosphorylation of Bcr-Abl, reduced cell proliferation, and increased caspase-3/7 activity and DNA segmentation. Importantly, the mutant coiled coil domain was more efficacious than the wild type in all experiments performed. The improved inhibition of Bcr-Abl through oligomeric disruption resulting from this modified coiled coil domain represents a viable alternative to small molecule inhibitors for therapeutic intervention.


Journal of Histochemistry and Cytochemistry | 1998

Simultaneous Visualization of the Yellow and Green Forms of the Green Fluorescent Protein in Living Cells

Chris T. Baumann; Carol S. Lim; Gordon L. Hager

In this study we sought to develop a method for the co-localization of proteins in living cells utilizing the enhanced green fluorescent protein (EGFP) and a redshifted EGFP variant, EYFP (enhanced yellow fluorescent protein). EYFP was expressed as an unsubstituted molecule while EGFP was fused to NF1 (EGFP-NF1), a transcription factor found exclusively in the nucleus. The Leica TCS SP laser scanning confocal microscope was used. This microscope allows the user to monitor the emitted light at defined wavelengths owing to the presence of a monochrometer in the emission light path. pEGFP-NF1 and pEYFP were co-expressed in the same cell and excited with the 476–nm and 488–nm argon laser lines. To separate the EYFP and EGFP fluorescence, EGFP-NF1 emission was recorded between 496 and 505 nm. These wavelengths are on the left shoulder of the EGFP emission peak and exclude most of the EYFP fluorescence. The EYFP emission was followed between 670 and 754 nm, utilizing the tail of EYFP emission that extends well beyond that for EGFP. Under these conditions we obtained excellent discrimination between EYFP fluorescence and EGFP-NF1 emission. These observations demonstrate that EYFP- and EGFP-substituted chimeras can be used for simultaneous detection in living cells.


Biologics: Targets & Therapy | 2014

Resistant mutations in CML and Ph + ALL – role of ponatinib

Geoffrey D. Miller; Benjamin J. Bruno; Carol S. Lim

In 2012, ponatinib (Iclusig®), an orally available pan-BCR-ABL tyrosine kinase inhibitor (TKI) developed by ARIAD Pharmaceuticals, Inc., was approved by the US Food and Drug Administration for use in resistant or intolerant chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). Ponatinib is the only approved TKI capable of inhibiting BCR-ABL with the gatekeeper T315I kinase domain mutation, known to be the cause for 20% of resistant or relapsed CML cases. In 2013, ponatinib sales were temporarily suspended due to serious side effects seen in nearly 12% of the patient population. These side effects are thought to stem from the potent nature and pan-activity of this TKI. ARIAD Pharmaceuticals, Inc. has since been permitted to resume sales and marketing of ponatinib to a limited patient population with an expanded black box warning. In the following review, the use of ponatinib in CML and Ph+ALL will be discussed. Mechanisms of resistance in CML are discussed, which provide insight and background into the need for this third generation TKI, followed by the molecular design and pharmacology of ponatinib, which lead to its success as a therapeutic. Finally, the efficacy, safety, and tolerability of ponatinib will be highlighted, including summaries of the important clinical trials involving ponatinib as well as its current place in therapy.


Journal of Controlled Release | 2009

Controlling subcellular localization to alter function: Sending oncogenic Bcr–Abl to the nucleus causes apoptosis

Andrew S. Dixon; Mudit Kakar; Korbinian M.H. Schneider; Jonathan E. Constance; Blake C. Paullin; Carol S. Lim

Altering the subcellular localization of signal transducing proteins is a novel approach for therapeutic intervention. Mislocalization of tumor suppressors, oncogenes, or factors involved in apoptosis results in aberrant functioning of these proteins, leading to disease. In the case of chronic myelogenous leukemia (CML), cytoplasmic Bcr-Abl causes oncogenesis/proliferation. On the other hand, nuclear entrapment of endogenous Bcr-Abl (in K562 human leukemia cells) causes apoptosis. The goal of this study was to determine whether ectopically expressed Bcr-Abl could cause apoptosis of K562 cells when specifically directed to the nucleus via strong nuclear localization signals (NLSs). A single NLS from SV40 large T-antigen or four NLSs were subcloned to Bcr-Abl (1NLS-Bcr-Abl or 4NLS-Bcr-Abl). When transfected into K562 cells, only 4NLS-Bcr-Abl translocated to the nucleus. Bcr-Abl alone was found to localize in the cell cytoplasm, colocalizing with actin due to its actin binding domain. 1NLS-Bcr-Abl also localized with actin. Apoptosis induced by 4NLS-Bcr-Abl was evaluated 24h post-transfection by morphologic determination, DNA staining, and caspase-3 assay. This is the first demonstration that altering the location of ectopically expressed Bcr-Abl can kill leukemia cells. Multiple NLSs are required to overcome Bcr-Abl binding to actin, thus driving it into the nucleus and causing apoptosis.


Cancer Journal | 2011

Development of an effective therapy for chronic myelogenous leukemia.

David W. Woessner; Carol S. Lim; Michael W. Deininger

AbstractTargeted small-molecule drugs have revolutionized treatment of chronic myeloid leukemia (CML) during the last decade. These agents interrupt a constitutively active BCR-ABL, the causative agent for CML, by interfering with adenosine 5′ triphosphate–dependent ABL tyrosine kinase. Although the efficacy of tyrosine kinase inhibitors (TKIs) has resulted in overall survival of greater than 90%, TKIs are not curative. Moreover, no currently approved TKIs are effective against the T315I BCR-ABL variant. However, a new generation of TKIs with activity against T315I is on the horizon. We will highlight the clinical utility of historical CML therapeutics, those used today (first- and second-generation TKIs), and discuss treatment modalities that are under development. Recent advances have illuminated the complexity of CML, especially within the marrow microenvironment. We contend that the key to curing CML will involve strategies beyond targeting BCR-ABL because primitive human CML stem cells are not dependent on BCR-ABL. Ultimately, drug combinations or exploiting synthetic lethality may transform responses into definitive cures for CML.


Nucleosides, Nucleotides & Nucleic Acids | 1997

Synthesis of DNA Dumbbells: Chemical vs. Enzymatic Ligation of Self-Complementary Oligonucleotides

Carol S. Lim; C. Anthony Hunt

Abstract The chemical (cyanogen bromide) and enzymatic (T4 DNA ligase) ligation of five different self-complementary oligonucleotide sequences which form 14-or 16-base pair dumbbells are described and compared here. A review of both chemical and enzymatic methods is presented; an improved enzymatic method is described as well. While both methods of ligation are effective, chemical ligation may be preferred since it is faster and less costly.

Collaboration


Dive into the Carol S. Lim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge