Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol Smee is active.

Publication


Featured researches published by Carol Smee.


Methods of Molecular Biology | 2008

High throughput production of recombinant human proteins for crystallography.

O. Gileadi; N. Burgess-Brown; Steve M. Colebrook; G. Berridge; P. Savitsky; Carol Smee; Peter Loppnau; C. Johansson; E. Salah; Nadia H. Pantic

This chapter presents in detail the process used in high throughput bacterial production of recombinant human proteins for crystal structure determination. The core principles are: (1) Generating at least 10 truncated constructs from each target gene. (2) Ligation-independent cloning (LIC) into a bacterial expression vector. All proteins are expressed with an N-terminal, TEV protease cleavable fusion peptide. (3) Small-scale test expression to identify constructs producing soluble protein. (4) Liter-scale production in shaker flasks. (5) Purification by Ni-affinity chromatography and gel filtration. (6) Protein characterization and preparation for crystallography. The chapter also briefly presents alternative procedures, to be applied based on specific knowledge of protein families or when the core protocol is unsatisfactory. This scheme has been applied to more than 550 human proteins (>10,000 constructs) and has resulted in the deposition of 112 unique structures. The methods presented do not depend on specialized equipment or robotics; hence, they provide an effective approach for handling individual proteins in a regular research lab.


Bioorganic & Medicinal Chemistry Letters | 2009

DNA gyrase (GyrB)/topoisomerase IV (ParE) inhibitors: synthesis and antibacterial activity.

Stephen Peter East; Clara Bantry White; Oliver Barker; Stephanie Barker; Jim Bennett; David Brown; E.Andrew Boyd; Christopher James Brennan; Chandana Chowdhury; Ian Collins; Emmanuelle Convers-Reignier; Brian W. Dymock; Rowena Fletcher; David J. Haydon; Mihaly Gardiner; Stuart Hatcher; Peter Ingram; Paul Lancett; Paul Mortenson; Konstantinos Papadopoulos; Carol Smee; Helena B. Thomaides-Brears; Heather Tye; James Workman; Lloyd George Czaplewski

The synthesis and antibacterial activities of three chemotypes of DNA supercoiling inhibitors based on imidazolo[1,2-a]pyridine and [1,2,4]triazolo[1,5-a]pyridine scaffolds that target the ATPase subunits of DNA gyrase and topoisomerase IV (GyrB/ParE) is reported. The most potent scaffold was selected for optimization leading to a series with potent Gram-positive antibacterial activity and a low resistance frequency.


Genome Medicine | 2013

Implementing a successful data-management framework: the UK10K managed access model

Dawn Muddyman; Carol Smee; Heather Griffin; Jane Kaye

This paper outlines the history behind open access principles and describes the development of a managed access data-sharing process for the UK10K Project, currently Britain’s largest genomic sequencing consortium (2010 to 2013). Funded by the Wellcome Trust, the purpose of UK10K was two-fold: to investigate how low-frequency and rare genetic variants contribute to human disease, and to provide an enduring data resource for future research into human genetics. In this paper, we discuss the challenge of reconciling data-sharing principles with the practicalities of delivering a sequencing project of UK10K’s scope and magnitude. We describe the development of a sustainable, easy-to-use managed access system that allowed rapid access to UK10K data, while protecting the interests of participants and data generators alike. Specifically, we focus in depth on the three key issues that emerge in the data pipeline: study recruitment, data release and data access.


Methods of Molecular Biology | 2008

Baculovirus Expression Vector System: An Emerging Host for High-Throughput Eukaryotic Protein Expression

Binesh Shrestha; Carol Smee; O. Gileadi

The increasing demand for production and characterization of diverse groups of recombinant proteins necessitates the analysis of several constructs and fusion tags in a variety of expression systems. The challenge is to screen multiple clones quickly for the desired properties. When using a eukaryotic system, such as baculovirus-mediated expression in insect cells, the total time required and the volume of culture needed to obtain reasonable results are limiting factors. This chapter focuses on addressing these issues by describing rapid small-scale expression as a mode of screening. The method allows the rapid identification of the best clone before scaling-up and the production of heterologous protein.


European Journal of Human Genetics | 2014

Managing clinically significant findings in research: the UK10K example

Jane Kaye; Heather Griffin; Jasjote Grewal; Martin Bobrow; Nic Timpson; Carol Smee; Patrick Bolton; Richard Durbin; Stephanie O.M. Dyke; David Fitzpatrick; Karen Kennedy; Alastair Kent; Dawn Muddyman; Francesco Muntoni; Lucy Raymond; Robert K. Semple; Tim D. Spector

Recent advances in sequencing technology allow data on the human genome to be generated more quickly and in greater detail than ever before. Such detail includes findings that may be of significance to the health of the research participant involved. Although research studies generally do not feed back information on clinically significant findings (CSFs) to participants, this stance is increasingly being questioned. There may be difficulties and risks in feeding clinically significant information back to research participants, however, the UK10K consortium sought to address these by creating a detailed management pathway. This was not intended to create any obligation upon the researchers to feed back any CSFs they discovered. Instead, it provides a mechanism to ensure that any such findings can be passed on to the participant where appropriate. This paper describes this mechanism and the specific criteria, which must be fulfilled in order for a finding and participant to qualify for feedback. This mechanism could be used by future research consortia, and may also assist in the development of sound principles for dealing with CSFs.


Antimicrobial Agents and Chemotherapy | 2013

Biological Evaluation of Benzothiazole Ethyl Urea Inhibitors of Bacterial Type II Topoisomerases

Neil R. Stokes; Helena B. Thomaides-Brears; Stephanie Barker; James M. Bennett; Joanne Berry; Ian Collins; Lloyd George Czaplewski; Vicki Gamble; Paul Lancett; Alastair Logan; Christopher J. Lunniss; Hilary Peasley; Stéphanie Pommier; Daniel Price; Carol Smee; David J. Haydon

ABSTRACT The type II topoisomerases DNA gyrase (GyrA/GyrB) and topoisomerase IV (ParC/ParE) are well-validated targets for antibacterial drug discovery. Because of their structural and functional homology, these enzymes are amenable to dual targeting by a single ligand. In this study, two novel benzothiazole ethyl urea-based small molecules, designated compound A and compound B, were evaluated for their biochemical, antibacterial, and pharmacokinetic properties. The two compounds inhibited the ATPase activity of GyrB and ParE with 50% inhibitory concentrations of <0.1 μg/ml. Prevention of DNA supercoiling by DNA gyrase was also observed. Both compounds potently inhibited the growth of a range of bacterial organisms, including staphylococci, streptococci, enterococci, Clostridium difficile, and selected Gram-negative respiratory pathogens. MIC90s against clinical isolates ranged from 0.015 μg/ml for Streptococcus pneumoniae to 0.25 μg/ml for Staphylococcus aureus. No cross-resistance with common drug resistance phenotypes was observed. In addition, no synergistic or antagonistic interactions between compound A or compound B and other antibiotics, including the topoisomerase inhibitors novobiocin and levofloxacin, were detected in checkerboard experiments. The frequencies of spontaneous resistance for S. aureus were <2.3 × 10−10 with compound A and <5.8 × 10−11 with compound B at concentrations equivalent to 8× the MICs. These values indicate a multitargeting mechanism of action. The pharmacokinetic properties of both compounds were profiled in rats. Following intravenous administration, compound B showed approximately 3-fold improvement over compound A in terms of both clearance and the area under the concentration-time curve. The measured oral bioavailability of compound B was 47.7%.


Biopreservation and Biobanking | 2015

Sharing and Reuse of Sensitive Data and Samples: Supporting Researchers in Identifying Ethical and Legal Requirements

Murat Sariyar; Irene Schluender; Carol Smee; Stephanie Suhr

Availability of and access to data and biosamples are essential in medical and translational research, where their reuse and repurposing by the wider research community can maximize their value and accelerate discovery. However, sharing human-related data or samples is complicated by ethical, legal, and social sensitivities. The specific ethical and legal requirements linked to sensitive data are often unfamiliar to life science researchers who, faced with vast amounts of complex, fragmented, and sometimes even contradictory information, may not feel competent to navigate through it. In this case, the impulse may be not to share the data in order to safeguard against unintentional misuse. Consequently, helping data providers to identify relevant ethical and legal requirements and how they might address them is an essential and frequently neglected step in removing possible hurdles to data and sample sharing in the life sciences. Here, we describe the complex regulatory context and discuss relevant online tools—one which the authors co-developed—targeted at assisting providers of sensitive data or biosamples with ethical and legal questions. The main results are (1) that the different approaches of the tools assume different user needs and prior knowledge of ethical and legal requirements, affecting how a service is designed and its usefulness, (2) that there is much potential for collaboration between tool providers, and (3) that enriched annotations of services (e.g., update status, completeness of information, and disclaimers) would increase their value and facilitate quick assessment by users. Further, there is still work to do with respect to providing researchers using sensitive data or samples with truly ‘useful’ tools that do not require pre-existing, in-depth knowledge of legal and ethical requirements or time to delve into the details. Ultimately, separate resources, maintained by experts familiar with the respective fields of research, may be needed while—in the longer term—harmonization and increase in ease of use will be very desirable.


Life Sciences, Society and Policy | 2015

‘Pop-Up’ Governance: developing internal governance frameworks for consortia: the example of UK10K

Jane Kaye; Dawn Muddyman; Carol Smee; Karen Kennedy; Jessica Bell

Innovations in information technologies have facilitated the development of new styles of research networks and forms of governance. This is evident in genomics where increasingly, research is carried out by large, interdisciplinary consortia focussing on a specific research endeavour. The UK10K project is an example of a human genomics consortium funded to provide insights into the genomics of rare conditions, and establish a community resource from generated sequence data. To achieve its objectives according to the agreed timetable, the UK10K project established an internal governance system to expedite the research and to deal with the complex issues that arose. The project’s governance structure exemplifies a new form of network governance called ‘pop-up’ governance. ‘Pop-up’ because: it was put together quickly, existed for a specific period, was designed for a specific purpose, and was dismantled easily on project completion. In this paper, we use UK10K to describe how ‘pop-up’ governance works on the ground and how relational, hierarchical and contractual governance mechanisms are used in this new form of network governance.


Bioorganic & Medicinal Chemistry Letters | 2009

Corrigendum to “DNA gyrase (GyrB)/topoisomerase IV (ParE) inhibitors: Synthesis and antibacterial activity” [Bioorg. Med. Chem. Lett. 19 (2009) 894]

Stephen Peter East; Clara Bantry White; Oliver Barker; Stephanie Barker; Jim Bennett; David Brown; E.Andrew Boyd; Christopher James Brennan; Chandana Chowdhury; Ian Collins; Emmanuelle Convers-Reignier; Brian W. Dymock; Rowena Fletcher; David J. Haydon; Mihaly Gardiner; Stuart Hatcher; Peter Ingram; Paul Lancett; Paul Mortenson; Konstantinos Papadopoulos; Carol Smee; Helena B. Thomaides-Brears; Heather Tye; James Workman; Lloyd George Czaplewski


Archive | 2015

BioMedBridges: Progress of compliance with the ethics review

Carol Smee; Stephanie Suhr

Collaboration


Dive into the Carol Smee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dawn Muddyman

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephanie Suhr

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge