Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carol Soderlund is active.

Publication


Featured researches published by Carol Soderlund.


Nature Biotechnology | 2013

Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement

Rajeev K. Varshney; Chi Song; Rachit K. Saxena; Sarwar Azam; Sheng Yu; Andrew G. Sharpe; Steven B. Cannon; Jong-Min Baek; Benjamin D. Rosen; Bunyamin Tar'an; Teresa Millán; Xudong Zhang; Larissa Ramsay; Aiko Iwata; Ying Wang; William C. Nelson; Andrew D. Farmer; Pooran M. Gaur; Carol Soderlund; R. Varma Penmetsa; Chunyan Xu; Arvind K. Bharti; Weiming He; Peter Winter; Shancen Zhao; James K. Hane; Noelia Carrasquilla-Garcia; Janet A. Condie; Hari D. Upadhyaya; Ming-Cheng Luo

Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection. Candidate genes for disease resistance and agronomic traits are highlighted, including traits that distinguish the two main market classes of cultivated chickpea—desi and kabuli. These data comprise a resource for chickpea improvement through molecular breeding and provide insights into both genome diversity and domestication.


Bioinformatics | 1997

FPC: a system for building contigs from restriction fingerprinted clones

Carol Soderlund; Ian Longden; Richard Mott

MOTIVATION To meet the demands of large-scale sequencing, thousands of clones must be fingerprinted and assembled into contigs. To determine the order of clones, a typical experiment is to digest the clones with one or more restriction enzymes and measure the resulting fragments. The probability of two clones overlapping is based on the similarity of their fragments. A contig contains two or more overlapping clones and a minimal tiling path of clones is selected to be sequenced. Interactive software with algorithmic support is necessary to assemble the clones into contigs quickly. RESULTS FPC (fingerprinted contigs) is an interactive program for building contigs from restriction fingerprinted clones. FPC uses an algorithm to cluster clones into contigs based on their probability of coincidence score. For each contig, it builds a consensus band (CB) map which is similar to a restriction map; but it does not try to resolve all the errors. The CB map is used to assign coordinates to the clones based on their alignment to the map and to provide a detailed visualization of the clone overlap. FPC has editing facilities for the user to refine the coordinates and to remove poorly fingerprinted clones. Functions are available for updating an FPC database with new clones. Contigs can easily be merged, split or deleted. Markers can be added to clones and are displayed with the appropriate contig. Sequence-ready clones can be selected and their sequencing status displayed. As such, FPC is an integrated program for the assembly of sequence-ready clones for large-scale sequencing projects.


PLOS Genetics | 2005

Physical and genetic structure of the maize genome reflects its complex evolutionary history.

Fusheng Wei; Edward H. Coe; William Nelson; Arvind K. Bharti; Fred Engler; Ed Butler; HyeRan Kim; Jose Luis Goicoechea; Mingsheng Chen; Seunghee Lee; Galina Fuks; Hector Sanchez-Villeda; Steven A Schroeder; Zhiwei Fang; Michael S. McMullen; Georgia L. Davis; John E. Bowers; Andrew H. Paterson; Mary L. Schaeffer; Jack M. Gardiner; Karen C. Cone; Joachim Messing; Carol Soderlund; Rod A. Wing

Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes.


Nucleic Acids Research | 2011

SyMAP v3.4: a turnkey synteny system with application to plant genomes

Carol Soderlund; Matthew Bomhoff; William Nelson

SyMAP (Synteny Mapping and Analysis Program) was originally developed to compute synteny blocks between a sequenced genome and a FPC map, and has been extended to support pairs of sequenced genomes. SyMAP uses MUMmer to compute the raw hits between the two genomes, which are then clustered and filtered using the optional gene annotation. The filtered hits are input to the synteny algorithm, which was designed to discover duplicated regions and form larger-scale synteny blocks, where intervening micro-rearrangements are allowed. SyMAP provides extensive interactive Java displays at all levels of resolution along with simultaneous displays of multiple aligned pairs. The synteny blocks from multiple chromosomes may be displayed in a high-level dot plot or three-dimensional view, and the user may then drill down to see the details of a region, including the alignments of the hits to the gene annotation. These capabilities are illustrated by showing their application to the study of genome duplication, differential gene loss and transitive homology between sorghum, maize and rice. The software may be used from a website or standalone for the best performance. A project manager is provided to organize and automate the analysis of multi-genome groups. The software is freely distributed at http://www.agcol.arizona.edu/software/symap.


PLOS Genetics | 2009

Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs.

Carol Soderlund; Anne Descour; Dave Kudrna; Matthew Bomhoff; Lomax Boyd; Jennifer Currie; Angelina Angelova; Kristi Collura; Marina Wissotski; Elizabeth Ashley; Darren J. Morrow; John Fernandes; Virginia Walbot; Yeisoo Yu

Full-length cDNA (FLcDNA) sequencing establishes the precise primary structure of individual gene transcripts. From two libraries representing 27 B73 tissues and abiotic stress treatments, 27,455 high-quality FLcDNAs were sequenced. The average transcript length was 1.44 kb including 218 bases and 321 bases of 5′ and 3′ UTR, respectively, with 8.6% of the FLcDNAs encoding predicted proteins of fewer than 100 amino acids. Approximately 94% of the FLcDNAs were stringently mapped to the maize genome. Although nearly two-thirds of this genome is composed of transposable elements (TEs), only 5.6% of the FLcDNAs contained TE sequences in coding or UTR regions. Approximately 7.2% of the FLcDNAs are putative transcription factors, suggesting that rare transcripts are well-enriched in our FLcDNA set. Protein similarity searching identified 1,737 maize transcripts not present in rice, sorghum, Arabidopsis, or poplar annotated genes. A strict FLcDNA assembly generated 24,467 non-redundant sequences, of which 88% have non-maize protein matches. The FLcDNAs were also assembled with 41,759 FLcDNAs in GenBank from other projects, where semi-strict parameters were used to identify 13,368 potentially unique non-redundant sequences from this project. The libraries, ESTs, and FLcDNA sequences produced from this project are publicly available. The annotated EST and FLcDNA assemblies are available through the maize FLcDNA web resource (www.maizecdna.org).


Plant Physiology | 2004

Anchoring 9,371 Maize Expressed Sequence Tagged Unigenes to the Bacterial Artificial Chromosome Contig Map by Two-Dimensional Overgo Hybridization

Jack M. Gardiner; Steven G. Schroeder; Mary L. Polacco; Hector Sanchez-Villeda; Zhiwei Fang; Michele Morgante; Tim Landewe; Kevin A. Fengler; Francisco Useche; Michael K. Hanafey; Scott V. Tingey; Hugh Chou; Rod A. Wing; Carol Soderlund; Edward H. Coe

Our goal is to construct a robust physical map for maize (Zea mays) comprehensively integrated with the genetic map. We have used a two-dimensional 24 × 24 overgo pooling strategy to anchor maize expressed sequence tagged (EST) unigenes to 165,888 bacterial artificial chromosomes (BACs) on high-density filters. A set of 70,716 public maize ESTs seeded derivation of 10,723 EST unigene assemblies. From these assemblies, 10,642 overgo sequences of 40 bp were applied as hybridization probes. BAC addresses were obtained for 9,371 overgo probes, representing an 88% success rate. More than 96% of the successful overgo probes identified two or more BACs, while 5% identified more than 50 BACs. The majority of BACs identified (79%) were hybridized with one or two overgos. A small number of BACs hybridized with eight or more overgos, suggesting that these BACs must be gene rich. Approximately 5,670 overgos identified BACs assembled within one contig, indicating that these probes are highly locus specific. A total of 1,795 megabases (Mb; 87%) of the total 2,050 Mb in BAC contigs were associated with one or more overgos, which are serving as sequence-tagged sites for single nucleotide polymorphism development. Overgo density ranged from less than one overgo per megabase to greater than 20 overgos per megabase. The majority of contigs (52%) hit by overgos contained three to nine overgos per megabase. Analysis of approximately 1,022 Mb of genetically anchored BAC contigs indicates that 9,003 of the total 13,900 overgo-contig sites are genetically anchored. Our results indicate overgos are a powerful approach for generating gene-specific hybridization probes that are facilitating the assembly of an integrated genetic and physical map for maize.


Plant Physiology | 2002

Genetic, Physical, and Informatics Resources for Maize. On the Road to an Integrated Map

Karen C. Cone; Michael D. McMullen; Irie Vroh Bi; Georgia L. Davis; Young Sun Yim; Jack M. Gardiner; Mary L. Polacco; Hector Sanchez-Villeda; Zhiwei Fang; Steven G. Schroeder; Seth A. Havermann; John E. Bowers; Andrew H. Paterson; Carol Soderlund; Fred Engler; Rod A. Wing; E. H. Coe

Maize ( Zea mays ) is among the most important crop plants in the world. For any crop plant, an integrated genetic and physical map serves as the foundation for numerous studies, especially those aimed at improving the agronomic characteristics of the plant. Once a phenotypically defined locus


Plant Physiology | 2011

Comparative Functional Genomic Analysis of Solanum Glandular Trichome Types

Eric T. McDowell; Jeremy Kapteyn; Adam Schmidt; Chao Li; Jin Ho Kang; Anne Descour; Feng Shi; Matthew D. Larson; Anthony L. Schilmiller; Lingling An; A. Daniel Jones; Eran Pichersky; Carol Soderlund; David R. Gang

Glandular trichomes play important roles in protecting plants from biotic attack by producing defensive compounds. We investigated the metabolic profiles and transcriptomes to characterize the differences between different glandular trichome types in several domesticated and wild Solanum species: Solanum lycopersicum (glandular trichome types 1, 6, and 7), Solanum habrochaites (types 1, 4, and 6), Solanum pennellii (types 4 and 6), Solanum arcanum (type 6), and Solanum pimpinellifolium (type 6). Substantial chemical differences in and between Solanum species and glandular trichome types are likely determined by the regulation of metabolism at several levels. Comparison of S. habrochaites type 1 and 4 glandular trichomes revealed few differences in chemical content or transcript abundance, leading to the conclusion that these two glandular trichome types are the same and differ perhaps only in stalk length. The observation that all of the other species examined here contain either type 1 or 4 trichomes (not both) supports the conclusion that these two trichome types are the same. Most differences in metabolites between type 1 and 4 glands on the one hand and type 6 glands on the other hand are quantitative but not qualitative. Several glandular trichome types express genes associated with photosynthesis and carbon fixation, indicating that some carbon destined for specialized metabolism is likely fixed within the trichome secretory cells. Finally, Solanum type 7 glandular trichomes do not appear to be involved in the biosynthesis and storage of specialized metabolites and thus likely serve another unknown function, perhaps as the site of the synthesis of protease inhibitors.


Plant Physiology | 2005

Whole-genome validation of high-information-content fingerprinting

William Nelson; Arvind K. Bharti; Ed Butler; Fusheng Wei; Galina Fuks; HyeRan Kim; Rod A. Wing; Joachim Messing; Carol Soderlund

Fluorescent-based high-information-content fingerprinting (HICF) techniques have recently been developed for physical mapping. These techniques make use of automated capillary DNA sequencing instruments to enable both high-resolution and high-throughput fingerprinting. In this article, we report the construction of a whole-genome HICF FPC map for maize (Zea mays subsp. mays cv B73), using a variant of HICF in which a type IIS restriction enzyme is used to generate the fluorescently labeled fragments. The HICF maize map was constructed from the same three maize bacterial artificial chromosome libraries as previously used for the whole-genome agarose FPC map, providing a unique opportunity for direct comparison of the agarose and HICF methods; as a result, it was found that HICF has substantially greater sensitivity in forming contigs. An improved assembly procedure is also described that uses automatic end-merging of contigs to reduce the effects of contamination and repetitive bands. Several new features in FPC v7.2 are presented, including shared-memory multiprocessing, which allows dramatically faster assemblies, and automatic end-merging, which permits more accurate assemblies. It is further shown that sequenced clones may be digested in silico and located accurately on the HICF assembly, despite size deviations that prevent the precise prediction of experimental fingerprints. Finally, repetitive bands are isolated, and their effect on the assembly is studied.


Plant Physiology | 2005

Large-Scale Identification of Expressed Sequence Tags Involved in Rice and Rice Blast Fungus Interaction

Chatchawan Jantasuriyarat; Malali Gowda; Karl Haller; Jamie Hatfield; Guodong Lu; Eric Stahlberg; Bo Zhou; Huameng Li; HyRan Kim; Yeisoo Yu; Ralph A. Dean; Rod A. Wing; Carol Soderlund; Guo-Liang Wang

To better understand the molecular basis of the defense response against the rice blast fungus (Magnaporthe grisea), a large-scale expressed sequence tag (EST) sequencing approach was used to identify genes involved in the early infection stages in rice (Oryza sativa). Six cDNA libraries were constructed using infected leaf tissues harvested from 6 conditions: resistant, partially resistant, and susceptible reactions at both 6 and 24 h after inoculation. Two additional libraries were constructed using uninoculated leaves and leaves from the lesion mimic mutant spl11. A total of 68,920 ESTs were generated from 8 libraries. Clustering and assembly analyses resulted in 13,570 unique sequences from 10,934 contigs and 2,636 singletons. Gene function classification showed that 42% of the ESTs were predicted to have putative gene function. Comparison of the pathogen-challenged libraries with the uninoculated control library revealed an increase in the percentage of genes in the functional categories of defense and signal transduction mechanisms and cell cycle control, cell division, and chromosome partitioning. In addition, hierarchical clustering analysis grouped the eight libraries based on their disease reactions. A total of 7,748 new and unique ESTs were identified from our collection compared with the KOME full-length cDNA collection. Interestingly, we found that rice ESTs are more closely related to sorghum (Sorghum bicolor) ESTs than to barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays) ESTs. The large cataloged collection of rice ESTs in this study provides a solid foundation for further characterization of the rice defense response and is a useful public genomic resource for rice functional genomics studies.

Collaboration


Dive into the Carol Soderlund's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Gang

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yeisoo Yu

University of Arizona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arvind K. Bharti

National Center for Genome Resources

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge