Carola W. Meyer
University of Marburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carola W. Meyer.
Science | 2010
Alexandros Vegiopoulos; Karin Müller-Decker; Daniela Strzoda; Iris Schmitt; Evgeny Chichelnitskiy; Anke Ostertag; Mauricio Berriel Diaz; Jan Rozman; Martin Hrabé de Angelis; Rolf M. Nüsing; Carola W. Meyer; Walter Wahli; Martin Klingenspor; Stephan Herzig
Fat-Burning Fat In mammals, fat exists in two forms—the well-known white adipose tissue (WAT), which stores energy and is associated with obesity, and the lesser-known brown adipose tissue (BAT), which burns energy to generate heat. BATs role in human physiology was once thought to be restricted to newborns, but the recent discovery that adults also harbor functional BAT has re-ignited interest in the factors regulating BAT development and their potential as targets for anti-obesity therapies. Vegiopoulos et al. (p. 1158, published online 6 May; see the Perspective Ishibashi and Seale) now show that cyclooxygenase-2 (COX-2), an enzyme critical to prostaglandin synthesis, triggers fat progenitor cells in mice to differentiate into BAT rather than WAT. Mice overexpressing COX-2 displayed increased energy expenditure and were protected from diet-induced obesity. In mice, the development of energy-burning brown fat is regulated by an enzyme that is critical for prostaglandin synthesis. Obesity results from chronic energy surplus and excess lipid storage in white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) efficiently burns lipids through adaptive thermogenesis. Studying mouse models, we show that cyclooxygenase (COX)–2, a rate-limiting enzyme in prostaglandin (PG) synthesis, is a downstream effector of β-adrenergic signaling in WAT and is required for the induction of BAT in WAT depots. PG shifted the differentiation of defined mesenchymal progenitors toward a brown adipocyte phenotype. Overexpression of COX-2 in WAT induced de novo BAT recruitment in WAT, increased systemic energy expenditure, and protected mice against high-fat diet–induced obesity. Thus, COX-2 appears integral to de novo BAT recruitment, which suggests that the PG pathway regulates systemic energy homeostasis.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010
Carola W. Meyer; Monja Willershäuser; Martin Jastroch; Bryan C. Rourke; Tobias Fromme; Rebecca Oelkrug; Gerhard Heldmaier; Martin Klingenspor
We compared maximal cold-induced heat production (HPmax) and cold limits between warm (WA; 27°C), moderate cold (MCA; 18°C), or cold acclimated (CA; 5°C) wild-type and uncoupling-protein 1 knockout (UCP1-KO) mice. In wild-type mice, HPmax was successively increased after MCA and CA, and the cold limit was lowered to -8.3°C and -18.0°C, respectively. UCP1-KO mice also increased HPmax in response to MCA and CA, although to a lesser extent. Direct comparison revealed a maximal cold-induced recruitment of heat production by +473 mW and +227 mW in wild-type and UCP1-KO mice, respectively. The increase in cold tolerance of UCP1-KO mice from -0.9°C in MCA to -10.1°C in CA could not be directly related to changes in HPmax, indicating that UCP1-KO mice used the dissipated heat more efficiently than wild-type mice. As judged from respiratory quotients, acutely cold-challenged UCP1-KO mice showed a delayed transition toward lipid oxidation, and 5-h cold exposure revealed diminished physical activity and less variability in the control of metabolic rate. We conclude that BAT is required for maximal adaptive thermogenesis but also allows metabolic flexibility and a rapid switch toward sustained lipid-fuelled thermogenesis as an acute response to cold. In both CA groups, expression of contractile proteins (myosin heavy-chain isoforms) showed minor training effects in skeletal muscles, while cardiac muscle of UCP1-KO mice had novel expression of beta cardiac isoform. Neither respiration nor basal proton conductance of skeletal muscle mitochondria were different between genotypes. In subcutaneous white adipose tissue of UCP1-KO mice, cold exposure increased cytochrome-c oxidase activity and expression of the cell death-inducing DFFA-like effector A by 3.6-fold and 15-fold, respectively, indicating the recruitment of mitochondria-rich brown adipocyte-like cells. Absence of functional BAT leads to remodeling of white adipose tissue, which may significantly contribute to adaptive thermogenesis during cold acclimation.
Journal of Biological Chemistry | 2010
Rebecca Oelkrug; Maria Kutschke; Carola W. Meyer; Gerhard Heldmaier; Martin Jastroch
In thermogenic brown adipose tissue, uncoupling protein 1 (UCP1) catalyzes the dissipation of mitochondrial proton motive force as heat. In a cellular environment of high oxidative capacity such as brown adipose tissue (BAT), mitochondrial uncoupling could also reduce deleterious reactive oxygen species, but the specific involvement of UCP1 in this process is disputed. By comparing brown adipose tissue mitochondria of wild type mice and UCP1-ablated litter mates, we show that UCP1 potently reduces mitochondrial superoxide production after cold acclimation and during fatty acid oxidation. We address the sites of superoxide production and suggest diminished probability of “reverse electron transport” facilitated by uncoupled respiration as the underlying mechanism of reactive oxygen species suppression in BAT. Furthermore, ablation of UCP1 represses the cold-stimulated increase of substrate oxidation normally seen in active BAT, resulting in lower superoxide production, presumably avoiding deleterious oxidative damage. We conclude that UCP1 allows high oxidative capacity without promoting oxidative damage by simultaneously lowering superoxide production.
Nature Communications | 2013
Rebecca Oelkrug; Nadja Goetze; Cornelia Exner; Yang Lee; Goutham K. Ganjam; Maria Kutschke; Saskia Müller; Sigrid Stöhr; Matthias H. Tschöp; Paul G. Crichton; Gerhard Heldmaier; Martin Jastroch; Carola W. Meyer
Endothermy has facilitated mammalian species radiation, but the sequence of events leading to sustained thermogenesis is debated in multiple evolutionary models. Here we study the Lesser hedgehog tenrec (Echinops telfairi), a phylogenetically ancient, ‘protoendothermic’ eutherian mammal, in which constantly high body temperatures are reported only during reproduction. Evidence for nonshivering thermogenesis is found in vivo during periodic ectothermic–endothermic transitions. Anatomical studies reveal large brown fat-like structures in the proximity of the reproductive organs, suggesting physiological significance for parental care. Biochemical analysis demonstrates high mitochondrial proton leak catalysed by an uncoupling protein 1 ortholog. Strikingly, bioenergetic profiling of tenrec uncoupling protein 1 reveals similar thermogenic potency as modern mouse uncoupling protein 1, despite the large phylogenetic distance. The discovery of functional brown adipose tissue in this ‘protoendothermic’ mammal links nonshivering thermogenesis directly to the roots of eutherian evolution, suggesting physiological importance prior to sustained body temperatures and migration to the cold.
Nature Communications | 2013
Timo D. Müller; Anne Müller; Chun-Xia Yi; Kirk M. Habegger; Carola W. Meyer; Bruce D. Gaylinn; Brian Finan; Kristy M. Heppner; Chitrang Trivedi; Maximilian Bielohuby; William Abplanalp; Franziska Meyer; Carolin L. Piechowski; Juliane Pratzka; Kerstin Stemmer; Jenna Holland; Jazzmin Hembree; Nakul Bhardwaj; Christine Raver; Nickki Ottaway; Radha Krishna; Renu Sah; Floyd R. Sallee; Stephen C. Woods; Diego Perez-Tilve; Martin Bidlingmaier; Michael O. Thorner; Heiko Krude; David L. Smiley; Richard D. DiMarchi
The G protein-coupled receptor 83 (Gpr83) is widely expressed in brain regions regulating energy metabolism. Here we report that hypothalamic expression of Gpr83 is regulated in response to nutrient availability and is decreased in obese mice compared with lean mice. In the arcuate nucleus, Gpr83 colocalizes with the ghrelin receptor (Ghsr1a) and the agouti-related protein. In vitro analyses show heterodimerization of Gpr83 with Ghsr1a diminishes activation of Ghsr1a by acyl-ghrelin. The orexigenic and adipogenic effect of ghrelin is accordingly potentiated in Gpr83-deficient mice. Interestingly, Gpr83 knock-out mice have normal body weight and glucose tolerance when fed a regular chow diet, but are protected from obesity and glucose intolerance when challenged with a high-fat diet, despite hyperphagia and increased hypothalamic expression of agouti-related protein, Npy, Hcrt and Ghsr1a. Together, our data suggest that Gpr83 modulates ghrelin action but also indicate that Gpr83 regulates systemic metabolism through other ghrelin-independent pathways.
Molecular metabolism | 2015
Susanne Keipert; Maria Kutschke; Daniel Lamp; Laura Brachthäuser; Frauke Neff; Carola W. Meyer; Rebecca Oelkrug; Alexei Kharitonenkov; Martin Jastroch
Objective Circulating fibroblast growth factor 21 (FGF21) is an important auto- and endocrine player with beneficial metabolic effects on obesity and diabetes. In humans, thermogenic brown adipose tissue (BAT) was recently suggested as a source of FGF21 secretion during cold exposure. Here, we aim to clarify the role of UCP1 and ambient temperature in the regulation of FGF21 in mice. Methods Wildtype (WT) and UCP1-knockout (UCP1 KO) mice, the latter being devoid of BAT-derived non-shivering thermogenesis, were exposed to different housing temperatures. Plasma metabolites and FGF21 levels were determined, gene expression was analyzed by qPCR, and tissue histology was performed with adipose tissue. Results At thermoneutrality, FGF21 gene expression and serum levels were not different between WT and UCP1 KO mice. Cold exposure led to highly increased FGF21 serum levels in UCP1 KO mice, which were reflected in increased FGF21 gene expression in adipose tissues but not in liver and skeletal muscle. Ex vivo secretion assays revealed FGF21 release only from BAT, progressively increasing with decreasing ambient temperatures. In association with increased FGF21 serum levels in the UCP1 KO mouse, typical FGF21-related serum metabolites and inguinal white adipose tissue morphology and thermogenic gene expression were altered. Conclusions Here we show that the genetic ablation of UCP1 increases FGF21 gene expression in adipose tissue. The removal of adaptive nonshivering thermogenesis renders BAT a significant source of endogenous FGF21 under thermal stress. Thus, the thermogenic competence of BAT is not a requirement for FGF21 secretion. Notably, high endogenous FGF21 levels in UCP1-deficient models and subjects may confound pharmacological FGF21 treatments.
Nature Communications | 2016
Dhiraj G. Kabra; Katrin Pfuhlmann; Cristina García-Cáceres; Sonja C. Schriever; Verónica Casquero García; Adam Fiseha Kebede; Esther Fuente-Martin; Chitrang Trivedi; Kristy M. Heppner; N. Henriette Uhlenhaut; Beata Legutko; Uma D. Kabra; Yuanqing Gao; Chun Xia Yi; Carmelo Quarta; Christoffer Clemmensen; Brian Finan; Timo D. Müller; Carola W. Meyer; Marcelo Paez-Pereda; Kerstin Stemmer; Stephen C. Woods; Diego Perez-Tilve; Robert Schneider; Eric N. Olson; Matthias H. Tschöp; Paul T. Pfluger
Hypothalamic leptin signalling has a key role in food intake and energy-balance control and is often impaired in obese individuals. Here we identify histone deacetylase 5 (HDAC5) as a regulator of leptin signalling and organismal energy balance. Global HDAC5 KO mice have increased food intake and greater diet-induced obesity when fed high-fat diet. Pharmacological and genetic inhibition of HDAC5 activity in the mediobasal hypothalamus increases food intake and modulates pathways implicated in leptin signalling. We show HDAC5 directly regulates STAT3 localization and transcriptional activity via reciprocal STAT3 deacetylation at Lys685 and phosphorylation at Tyr705. In vivo, leptin sensitivity is substantially impaired in HDAC5 loss-of-function mice. Hypothalamic HDAC5 overexpression improves leptin action and partially protects against HFD-induced leptin resistance and obesity. Overall, our data suggest that hypothalamic HDAC5 activity is a regulator of leptin signalling that adapts food intake and body weight to our dietary environment.
Obesity | 2009
Carola W. Meyer; Asja Wagener; Nadine Rink; Claudia Hantschel; Gerhard Heldmaier; Martin Klingenspor; Gudrun A. Brockmann
To constitute a valuable resource to identify individual genes involved in the development of obesity, a novel mouse model, the Berlin Fat Mouse Inbred line 860 (BFMI860), was established. In order to characterize energy intake and energy expenditure in obese BFMI860 mice, we performed two independent sets of experiments in male BFMI860 and B6 control mice (10 per line). In experiment 1, we analyzed body fat content noninvasively by dual‐energy X‐ray absorptiometry and measured resting metabolic rate at thermoneutrality (RMRt) and respiratory quotient (RQ) in week 6, 10, and 18. In a second experiment, energy digested (energy intake minus fecal energy loss) was determined by bomb calorimetry from week 6 through week 12. BFMI860 mice were heavier and had higher fat mass (final body fat content was 24.7% compared with 14.6% in B6). They also showed fatty liver syndrome. High body fat accumulation in BFMI860 mice was restricted to weeks 6–10 and was accompanied by hyperphagia, higher energy digestion, higher RQs, and abnormally high blood triglyceride levels. Lean mass–adjusted RMRt was not altered between lines. These results indicate that in BFMI860 mice, the excessive accumulation of body fat is associated with altered lipid metabolism, high energy intake, and energy digestion. Assuming that BFMI860 mice and their obese phenotypes are of polygenic nature, this line is an excellent model for the study of obesity in humans, especially for juvenile obesity and hyperlipidemia.
Naturwissenschaften | 2007
Carola W. Meyer; Ralf Elvert; André Scherag; Nicole Ehrhardt; Valérie Gailus-Durner; Helmut Fuchs; Helmut Schäfer; Martin Hrabé de Angelis; Gerhard Heldmaier; Martin Klingenspor
Much of our understanding of physiology and metabolism is derived from investigating mouse mutants and transgenic mice, and open-access platforms for standardized mouse phenotyping such as the German Mouse Clinic (GMC) are currently viewed as one powerful tool for identifying novel gene-function relationships. Phenotyping or phenotypic screening involves the comparison of wild-type control mice with their mutant or transgenic littermates. In our study, we explored the extent to which standardized phenotyping will succeed in detecting biologically relevant phenotypic differences in mice generated and provided by different collaborators. We analyzed quantitative metabolic data (body mass, energy intake, and energy metabolized) collected at the GMC under the current workflow, and used them for statistical power considerations. Our results demonstrate that there is substantial variability in these parameters among lines of wild-type C57BL/6 (B6) mice from different sources. Given this variable background noise in mice that serve as controls, subtle phenotypes in mutant or transgenic littermates may be overlooked. Furthermore, a phenotype observed in one cohort of a mutant line may not be reproducible (to the same extent) in mice coming from a different environment or supplier. In the light of these constraints, we encourage researchers to incorporate information on intrastrain variability into future study planning, or to perform advanced hierarchical analyses. Both will ultimately improve the detectability of novel phenotypes by phenotypic screening.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2014
Kirsten Grimpo; Maria Kutschke; Anja Kastl; Carola W. Meyer; Gerhard Heldmaier; Cornelia Exner; Martin Jastroch
Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Recently, depression of mitochondrial substrate oxidation in isolated liver mitochondria was observed and associated to hypothermic/hypometabolic states in Djungarian hamsters, mice and hibernators. We aimed to clarify whether hypothermia or hypometabolism causes mitochondrial depression during torpor by studying the Golden spiny mouse (Acomys russatus), a desert rodent which performs daily torpor at high ambient temperatures of 32°C. Notably, metabolic rate but not body temperature is significantly decreased under these conditions. In isolated liver, heart, skeletal muscle or kidney mitochondria we found no depression of respiration. Moderate cold exposure lowered torpor body temperature but had minor effects on minimal metabolic rate in torpor. Neither decreased body temperature nor metabolic rate impacted mitochondrial respiration. Measurements of mitochondrial proton leak kinetics and determination of P/O ratio revealed no differences in mitochondrial efficiency. Hydrogen peroxide release from mitochondria was not affected. We conclude that interspecies differences of mitochondrial depression during torpor do not support a general relationship between mitochondrial respiration, body temperature and metabolic rate. In Golden spiny mice, reduction of metabolic rate at mild temperatures is not triggered by depression of substrate oxidation as found in liver mitochondria from other cold-exposed rodents.