Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carole A. Foy is active.

Publication


Featured researches published by Carole A. Foy.


Clinical Chemistry | 2013

The Digital MIQE Guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments

Jim F. Huggett; Carole A. Foy; Vladimir Benes; Kerry R. Emslie; Jeremy A. Garson; Ross J. Haynes; Jan Hellemans; Mikael Kubista; Reinhold Mueller; Tania Nolan; Michael W. Pfaffl; Gregory L. Shipley; Jo Vandesompele; Carl T. Wittwer; Stephen A. Bustin

There is growing interest in digital PCR (dPCR) because technological progress makes it a practical and increasingly affordable technology. dPCR allows the precise quantification of nucleic acids, facilitating the measurement of small percentage differences and quantification of rare variants. dPCR may also be more reproducible and less susceptible to inhibition than quantitative real-time PCR (qPCR). Consequently, dPCR has the potential to have a substantial impact on research as well as diagnostic applications. However, as with qPCR, the ability to perform robust meaningful experiments requires careful design and adequate controls. To assist independent evaluation of experimental data, comprehensive disclosure of all relevant experimental details is required. To facilitate this process we present the Minimum Information for Publication of Quantitative Digital PCR Experiments guidelines. This report addresses known requirements for dPCR that have already been identified during this early stage of its development and commercial implementation. Adoption of these guidelines by the scientific community will help to standardize experimental protocols, maximize efficient utilization of resources, and enhance the impact of this promising new technology.


Analytical Chemistry | 2011

Evaluation of digital PCR for absolute DNA quantification.

Rebecca Sanders; Jim F. Huggett; Claire A. Bushell; Simon Cowen; Daniel J. Scott; Carole A. Foy

The emerging technique of microfluidic digital PCR (dPCR) offers a unique approach to real-time quantitative PCR for measuring nucleic acids that may be particularly suited for low-level detection. In this study, we evaluated the quantitative capabilities of dPCR when measuring small amounts (<200 copies) of DNA and investigated parameters influencing technical performance. We used various DNA templates, matrixes, and assays to evaluate the precision, sensitivity and reproducibility of dPCR, and demonstrate that this technique can be highly reproducible when performed at different times and when different primer sets are targeting the same molecule. dPCR exhibited good analytical sensitivity and was reproducible outside the range recommended by the instrument manufacturer; detecting 16 estimated targets with high precision. The inclusion of carrier had no effect on this estimated quantity, but did improve measurement precision. We report disagreement when using dPCR to measure different template types and when comparing the estimated quantities by dPCR and UV spectrophotometry. Finally, we also demonstrate that preamplification can impose a significant measurement bias. These findings provide an independent assessment of low copy molecular measurement using dPCR and underline important factors for consideration in dPCR experimental design.


Clinical Chemistry | 2015

Considerations for Digital PCR as an Accurate Molecular Diagnostic Tool

Jim F. Huggett; Simon Cowen; Carole A. Foy

BACKGROUND Digital PCR (dPCR) is an increasingly popular manifestation of PCR that offers a number of unique advantages when applied to preclinical research, particularly when used to detect rare mutations and in the precise quantification of nucleic acids. As is common with many new research methods, the application of dPCR to potential clinical scenarios is also being increasingly described. CONTENT This review addresses some of the factors that need to be considered in the application of dPCR. Compared to real-time quantitative PCR (qPCR), dPCR clearly has the potential to offer more sensitive and considerably more reproducible clinical methods that could lend themselves to diagnostic, prognostic, and predictive tests. But for this to be realized the technology will need to be further developed to reduce cost and simplify application. Concomitantly the preclinical research will need be reported with a comprehensive understanding of the associated errors. dPCR benefits from a far more predictable variance than qPCR but is as susceptible to upstream errors associated with factors like sampling and extraction. dPCR can also suffer systematic bias, particularly leading to underestimation, and internal positive controls are likely to be as important for dPCR as they are for qPCR, especially when reporting the absence of a sequence. SUMMARY In this review we highlight some of the considerations that may be needed when applying dPCR and discuss sources of error. The factors discussed here aim to assist in the translation of dPCR to diagnostic, predictive, or prognostic applications.


BMC Biotechnology | 2005

Standardisation of data from real-time quantitative PCR methods – evaluation of outliers and comparison of calibration curves

Malcolm Burns; Gavin Nixon; Carole A. Foy; Neil Harris

BackgroundAs real-time quantitative PCR (RT-QPCR) is increasingly being relied upon for the enforcement of legislation and regulations dependent upon the trace detection of DNA, focus has increased on the quality issues related to the technique. Recent work has focused on the identification of factors that contribute towards significant measurement uncertainty in the real-time quantitative PCR technique, through investigation of the experimental design and operating procedure. However, measurement uncertainty contributions made during the data analysis procedure have not been studied in detail. This paper presents two additional approaches for standardising data analysis through the novel application of statistical methods to RT-QPCR, in order to minimise potential uncertainty in results.ResultsExperimental data was generated in order to develop the two aspects of data handling and analysis that can contribute towards measurement uncertainty in results. This paper describes preliminary aspects in standardising data through the application of statistical techniques to the area of RT-QPCR. The first aspect concerns the statistical identification and subsequent handling of outlying values arising from RT-QPCR, and discusses the implementation of ISO guidelines in relation to acceptance or rejection of outlying values. The second aspect relates to the development of an objective statistical test for the comparison of calibration curves.ConclusionThe preliminary statistical tests for outlying values and comparisons between calibration curves can be applied using basic functions found in standard spreadsheet software. These two aspects emphasise that the comparability of results arising from RT-QPCR needs further refinement and development at the data-handling phase. The implementation of standardised approaches to data analysis should further help minimise variation due to subjective judgements. The aspects described in this paper will help contribute towards the development of a set of best practice guidelines regarding standardising handling and interpretation of data arising from RT-QPCR experiments.


Analytical and Bioanalytical Chemistry | 2014

Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification

Alison S. Devonshire; Alexandra S. Whale; Alice Gutteridge; Gerwyn M. Jones; Simon Cowen; Carole A. Foy; Jim F. Huggett

AbstractCirculating cell-free DNA (cfDNA) is becoming an important clinical analyte for prenatal testing, cancer diagnosis and cancer monitoring. The extraction stage is critical in ensuring clinical sensitivity of analytical methods measuring minority nucleic acid fractions, such as foetal-derived sequences in predominantly maternal cfDNA. Consequently, quality controls are required for measurement of extraction efficiency, fragment size bias and yield for validation of cfDNA methods. We evaluated the utility of an external DNA spike for monitoring these parameters in a study comparing three specific cfDNA extraction methods [QIAamp® circulating nucleic acid (CNA) kit, NucleoSpin® Plasma XS (NS) kit and FitAmp™ plasma/serum DNA isolation (FA) kit] with the commonly used QIAamp DNA blood mini (DBM) kit. We found that the extraction efficiencies of the kits ranked in the order CNA kit > DBM kit > NS kit > FA kit, and the CNA and NS kits gave a better representation of smaller DNA fragments in the extract than the DBM kit. We investigated means of improved reporting of cfDNA yield by comparing quantitative PCR measurements of seven different reference gene assays in plasma samples and validating these with digital PCR. We noted that the cfDNA quantities based on measurement of some target genes (e.g. TERT) were, on average, more than twofold higher than those of other assays (e.g. ERV3). We conclude that analysis and averaging of multiple reference genes using a GeNorm approach gives a more reliable estimate of total cfDNA quantity. FigureComparison of single and multiple reference gene normalisation for quantification of plasma cell free DNA


PLOS ONE | 2013

Evaluation of Digital PCR for Absolute RNA Quantification

Rebecca Sanders; Deborah Jane Mason; Carole A. Foy; Jim F. Huggett

Gene expression measurements detailing mRNA quantities are widely employed in molecular biology and are increasingly important in diagnostic fields. Reverse transcription (RT), necessary for generating complementary DNA, can be both inefficient and imprecise, but remains a quintessential RNA analysis tool using qPCR. This study developed a Transcriptomic Calibration Material and assessed the RT reaction using digital (d)PCR for RNA measurement. While many studies characterise dPCR capabilities for DNA quantification, less work has been performed investigating similar parameters using RT-dPCR for RNA analysis. RT-dPCR measurement using three, one-step RT-qPCR kits was evaluated using single and multiplex formats when measuring endogenous and synthetic RNAs. The best performing kit was compared to UV quantification and sensitivity and technical reproducibility investigated. Our results demonstrate assay and kit dependent RT-dPCR measurements differed significantly compared to UV quantification. Different values were reported by different kits for each target, despite evaluation of identical samples using the same instrument. RT-dPCR did not display the strong inter-assay agreement previously described when analysing DNA. This study demonstrates that, as with DNA measurement, RT-dPCR is capable of accurate quantification of low copy RNA targets, but the results are both kit and target dependent supporting the need for calibration controls.


BioTechniques | 2013

A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability.

Nicholas Redshaw; Timothy Wilkes; Alexandra S. Whale; Simon Cowen; Jim F. Huggett; Carole A. Foy

MicroRNAs (miRNAs) are short (~22 nucleotides), non-coding RNA molecules that post-transcriptionally regulate gene expression. As the miRNA field is still in its relative infancy, there is currently a lack of consensus regarding optimal methodologies for miRNA quantification, data analysis and data standardization. To investigate miRNA measurement we selected a panel of both synthetic miRNA spikes and endogenous miRNAs to evaluate assay performance, copy number estimation, and relative quantification. We compared two different miRNA quantification methodologies and also assessed the impact of short RNA enrichment on the miRNA measurement. We found that both short RNA enrichment and quantification strategy used had a significant impact on miRNA measurement. Our findings illustrate that miRNA quantification can be influenced by the choice of methodology and this must be considered when interpreting miRNA analyses. Furthermore, we show that synthetic miRNA spikes can be used as effective experimental controls for the short RNA enrichment procedure.


Analytical Chemistry | 2014

Comparative Study of Sensitivity, Linearity, and Resistance to Inhibition of Digital and Nondigital Polymerase Chain Reaction and Loop Mediated Isothermal Amplification Assays for Quantification of Human Cytomegalovirus

Gavin Nixon; Jeremy A. Garson; Paul Grant; Eleni Nastouli; Carole A. Foy; Jim F. Huggett

Performing nucleic acid amplification techniques (NAATs) in digital format using limiting dilution provides potential advantages that have recently been demonstrated with digital polymerase chain reaction (dPCR). Key benefits that have been claimed are the ability to quantify nucleic acids without the need of an external calibrator and a greater resistance to inhibitors than real-time quantitative PCR (qPCR). In this study, we evaluated the performance of four NAATs, qPCR, dPCR, real-time quantitative loop mediated isothermal amplification (qLAMP), and digital LAMP (dLAMP), for the detection and quantification of human cytomegalovirus (hCMV). We used various DNA templates and inhibitors to compare the performance of these methods using a conventional real-time thermocycler platform (Bio-Rad CFX96) and a chip based digital platform (Fluidigm Biomark 12.765 Digital Array). dPCR performed well and demonstrated greater resistance to inhibitors than the other methods although this resistance did not apply equally to all inhibitors tested. dLAMP was found to be less sensitive than dPCR, but its quantitative performance was better than qLAMP, the latter being unable to quantify below 1000 copies. dLAMP was also more resistant to inhibitors than qLAMP. Unlike qPCR, both digital methods were able to quantify viral genomes without requiring a calibrator; however, neither can currently compete with the large reaction volumes, and thus the greater absolute sensitivity, of qPCR. With the introduction of digital instrumentation that will enable larger reaction volumes, digital amplification methods such as those evaluated in this study could potentially offer a robust alternative to qPCR for nucleic acid quantification.


PLOS ONE | 2013

Methods for Applying Accurate Digital PCR Analysis on Low Copy DNA Samples

Alexandra S. Whale; Simon Cowen; Carole A. Foy; Jim F. Huggett

Digital PCR (dPCR) is a highly accurate molecular approach, capable of precise measurements, offering a number of unique opportunities. However, in its current format dPCR can be limited by the amount of sample that can be analysed and consequently additional considerations such as performing multiplex reactions or pre-amplification can be considered. This study investigated the impact of duplexing and pre-amplification on dPCR analysis by using three different assays targeting a model template (a portion of the Arabidopsis thaliana alcohol dehydrogenase gene). We also investigated the impact of different template types (linearised plasmid clone and more complex genomic DNA) on measurement precision using dPCR. We were able to demonstrate that duplex dPCR can provide a more precise measurement than uniplex dPCR, while applying pre-amplification or varying template type can significantly decrease the precision of dPCR. Furthermore, we also demonstrate that the pre-amplification step can introduce measurement bias that is not consistent between experiments for a sample or assay and so could not be compensated for during the analysis of this data set. We also describe a model for estimating the prevalence of molecular dropout and identify this as a source of dPCR imprecision. Our data have demonstrated that the precision afforded by dPCR at low sample concentration can exceed that of the same template post pre-amplification thereby negating the need for this additional step. Our findings also highlight the technical differences between different templates types containing the same sequence that must be considered if plasmid DNA is to be used to assess or control for more complex templates like genomic DNA.


Methods | 2013

Application of next generation qPCR and sequencing platforms to mRNA biomarker analysis.

Alison S. Devonshire; Rebecca Sanders; Timothy Wilkes; Martin S. Taylor; Carole A. Foy; Jim F. Huggett

Recent years have seen the emergence of new high-throughput PCR and sequencing platforms with the potential to bring analysis of transcriptional biomarkers to a broader range of clinical applications and to provide increasing depth to our understanding of the transcriptome. We present an overview of how to process clinical samples for RNA biomarker analysis in terms of RNA extraction and mRNA enrichment, and guidelines for sample analysis by RT-qPCR and digital PCR using nanofluidic real-time PCR platforms. The options for quantitative gene expression profiling and whole transcriptome sequencing by next generation sequencing are reviewed alongside the bioinformatic considerations for these approaches. Considering the diverse technologies now available for transcriptome analysis, methods for standardising measurements between platforms will be paramount if their diagnostic impact is to be maximised. Therefore, the use of RNA standards and other reference materials is also discussed.

Collaboration


Dive into the Carole A. Foy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jana Žel

University of Ljubljana

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge