Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carole Charlier is active.

Publication


Featured researches published by Carole Charlier.


Nature Genetics | 2006

A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep

Alex Clop; Fabienne Marcq; Haruko Takeda; Dimitri Pirottin; Xavier Tordoir; Bernard Bibé; Jacques Bouix; Florian Caiment; Jean-Michel Elsen; Francis Eychenne; Catherine Larzul; Elisabeth Laville; Françoise Meish; Dragan Milenkovic; James Tobin; Carole Charlier; Michel Georges

Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov × Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3′ UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.


Current Biology | 2005

RNAi-Mediated Allelic trans-Interaction at the Imprinted Rtl1/Peg11 Locus

Erica E. Davis; Florian Caiment; Xavier Tordoir; Jérôme Cavaillé; Anne C. Ferguson-Smith; Noelle E. Cockett; Michel Georges; Carole Charlier

The Dlk1-Gtl2 imprinted domain, encompassing the callipyge (CLPG) locus in sheep, has recently been shown to harbor a large number of maternally expressed miRNA genes [1, 2]. Two of these (mir127 and mir136) are processed from a transcript (antiPeg11) that is antisense to Rtl1/Peg11, a paternally expressed intronless gene with homology to the gag and pol polyproteins of Sushi-like retroelements [3]. We herein demonstrate that several additional miRNAs are processed from antiPeg11 and that these regulate Rtl1/Peg11 in trans by guiding RISC-mediated cleavage of its mRNA. This is the first demonstration of miRNA-mediated RNAi involving imprinted genes in mammals.


Nature Genetics | 2008

Highly effective SNP-based association mapping and management of recessive defects in livestock

Carole Charlier; Wouter Coppieters; Frédéric Rollin; Daniel Desmecht; Jørgen S. Agerholm; Nadine Cambisano; Eloisa Carta; Sabrina Dardano; Marc Dive; Jean-Claude Frennet; R Hanset; Xavier Hubin; Claus B. Jørgensen; Latifa Karim; Matthew Kent; Kirsten Harvey; Brian R. Pearce; Patricia Simon; Nico Tama; Haisheng Nie; Sébastien Vandeputte; Sigbjørn Lien; Maria Longeri; Merete Fredholm; Robert J. Harvey; Michel Georges

The widespread use of elite sires by means of artificial insemination in livestock breeding leads to the frequent emergence of recessive genetic defects, which cause significant economic and animal welfare concerns. Here we show that the availability of genome-wide, high-density SNP panels, combined with the typical structure of livestock populations, markedly accelerates the positional identification of genes and mutations that cause inherited defects. We report the fine-scale mapping of five recessive disorders in cattle and the molecular basis for three of these: congenital muscular dystony (CMD) types 1 and 2 in Belgian Blue cattle and ichthyosis fetalis in Italian Chianina cattle. Identification of these causative mutations has an immediate translation into breeding practice, allowing marker assisted selection against the defects through avoidance of at-risk matings.


Nature Genetics | 2001

The callipyge mutation enhances the expression of coregulated imprinted genes in cis without affecting their imprinting status

Carole Charlier; Karin Segers; Latifa Karim; T. L. Shay; Gabor Gyapay; Noelle E. Cockett; Michel Georges

The callipyge (CLPG) phenotype (from καλι, “beautiful,” and πιγɛ, “buttocks”) described in sheep is an inherited muscular hypertrophy that is subject to an unusual parent-of-origin effect referred to as polar overdominance: only heterozygous individuals having inherited the CLPG mutation from their sire exhibit the muscular hypertrophy. The callipyge (clpg) locus was mapped to a chromosome segment of approximately 400 kb (refs. 2–4), which was shown to contain four genes (DLK1, GTL2, PEG11 and MEG8) that are preferentially expressed in skeletal muscle and subject to parental imprinting in this tissue. Here we describe the effect of the CLPG mutation on the expression of these four genes, and demonstrate that callipyge individuals have a unique expression profile that may account for the observed polar overdominance.


Trends in Genetics | 2003

The callipyge locus: evidence for the trans interaction of reciprocally imprinted genes

Michel Georges; Carole Charlier; Noelle E. Cockett

The callipyge phenotype in sheep is an inherited muscular hypertrophy that affects only heterozygous individuals who receive the CLPG mutation from their father. The CLPG mutation is a single nucleotide substitution in what is probably a long-range control element (LRCE) within the DLK1-GTL2 imprinted domain. Recent results suggest that the unique mode of inheritance of callipyge, referred to as polar overdominance, results from the combination of the cis-effect of the CLPG mutation on the expression levels of genes in the DLK1-GTL2 imprinted domain, and the trans interaction between the products of reciprocally imprinted genes.


Mammalian Genome | 1995

The mh gene causing double-muscling in cattle maps to bovine chromosome 2.

Carole Charlier; Wouter Coppieters; Frédéric Farnir; Luc Grobet; Pascal Leroy; Charles Michaux; Myriam Mni; A. Schwers; Pascal Vanmanshoven; R Hanset; Michel Georges

While the hereditary nature of the “double-muscling” phenotype (a generalized muscular hypertrophy documented in several cattle breeds) is well established, its precise segregation mode has remained controversial. Both monogenic models (autosomal dominant or recessive) and oligogenic models have been proposed. Using a panel of 213 bovine microsatellite markers, and an experimental pedigree obtained by backcrossing “double-muscled (Belgian Blue)xconventional (Friesian)” F1 dams to double-muscled sire, we have mapped a locus on bovine Chromosome (Chr) 2 that accounts for all the phenotypic variance in the backcross generation. This locus, referred to as mh (muscular hypertrophy), has been positioned with respect to a map composed of seven Chr 2-specific microsatellites, at 2 cM from the closest marker. This result confirms the validity in the Belgian Blue population of the monogenic model involving an autosomal mh locus, characterized by a wild-type “+” and a recessive “mh” allele, causing the double-muscling phenotype in the homozygous condition. The linkage relationship between the mh locus and the Chr 2 markers was confirmed in three informative pedigrees collected from the general Belgian Blue Cattle population, reinforcing the notion of genetic homogeneity of the double-muscling trait in this breed. This work paves the way towards marker-assisted selection for or against the double-muscling trait, and towards positional cloning of the corresponding gene.


Nature | 2012

Serial translocation by means of circular intermediates underlies colour sidedness in cattle

Keith Durkin; Wouter Coppieters; Cord Drögemüller; Naima Ahariz; Nadine Cambisano; Tom Druet; Aynalem Haile; Petr Horin; Lusheng Huang; Yohichiro Kamatani; Latifa Karim; Mark Lathrop; Simon Moser; Kor Oldenbroek; Stefan Rieder; Arnaud Sartelet; Johann Sölkner; Hans Stålhammar; Diana Zelenika; Zhiyan Zhang; Tosso Leeb; Michel Georges; Carole Charlier

Colour sidedness is a dominantly inherited phenotype of cattle characterized by the polarization of pigmented sectors on the flanks, snout and ear tips. It is also referred to as ‘lineback’ or ‘witrik’ (which means white back), as colour-sided animals typically display a white band along their spine. Colour sidedness is documented at least since the Middle Ages and is presently segregating in several cattle breeds around the globe, including in Belgian blue and brown Swiss. Here we report that colour sidedness is determined by a first allele on chromosome 29 (Cs29), which results from the translocation of a 492-kilobase chromosome 6 segment encompassing KIT to chromosome 29, and a second allele on chromosome 6 (Cs6), derived from the first by repatriation of fused 575-kilobase chromosome 6 and 29 sequences to the KIT locus. We provide evidence that both translocation events involved circular intermediates. This is the first example, to our knowledge, of a phenotype determined by homologous yet non-syntenic alleles that result from a novel copy-number-variant-generating mechanism.


PLOS Genetics | 2014

A 660-Kb Deletion with Antagonistic Effects on Fertility and Milk Production Segregates at High Frequency in Nordic Red Cattle: Additional Evidence for the Common Occurrence of Balancing Selection in Livestock

Naveen K. Kadri; Goutam Sahana; Carole Charlier; Terhi Iso-Touru; Bernt Guldbrandtsen; Latifa Karim; U.S. Nielsen; Frank Panitz; Gert Pedersen Aamand; Nina Schulman; Michel Georges; Johanna Vilkki; Mogens Sandø Lund; Tom Druet

In dairy cattle, the widespread use of artificial insemination has resulted in increased selection intensity, which has led to spectacular increase in productivity. However, cow fertility has concomitantly severely declined. It is generally assumed that this reduction is primarily due to the negative energy balance of high-producing cows at the peak of lactation. We herein describe the fine-mapping of a major fertility QTL in Nordic Red cattle, and identify a 660-kb deletion encompassing four genes as the causative variant. We show that the deletion is a recessive embryonically lethal mutation. This probably results from the loss of RNASEH2B, which is known to cause embryonic death in mice. Despite its dramatic effect on fertility, 13%, 23% and 32% of the animals carry the deletion in Danish, Swedish and Finnish Red Cattle, respectively. To explain this, we searched for favorable effects on other traits and found that the deletion has strong positive effects on milk yield. This study demonstrates that embryonic lethal mutations account for a non-negligible fraction of the decline in fertility of domestic cattle, and that associated positive effects on milk yield may account for part of the negative genetic correlation. Our study adds to the evidence that structural variants contribute to animal phenotypic variation, and that balancing selection might be more common in livestock species than previously appreciated.


PLOS Genetics | 2012

Genetic Variants in REC8, RNF212, and PRDM9 Influence Male Recombination in Cattle

Cynthia Sandor; Wanbo Li; Wouter Coppieters; Tom Druet; Carole Charlier; Michel Georges

We use >250,000 cross-over events identified in >10,000 bovine sperm cells to perform an extensive characterization of meiotic recombination in male cattle. We map Quantitative Trait Loci (QTL) influencing genome-wide recombination rate, genome-wide hotspot usage, and locus-specific recombination rate. We fine-map three QTL and present strong evidence that genetic variants in REC8 and RNF212 influence genome-wide recombination rate, while genetic variants in PRDM9 influence genome-wide hotspot usage.


PLOS Genetics | 2009

Balancing selection of a frame-shift mutation in the MRC2 gene accounts for the outbreak of the Crooked Tail Syndrome in Belgian Blue Cattle.

Arnaud Sartelet; Wanbo Li; Marc Dive; Nico Tamma; Charles Michaux; Tom Druet; Ivo J Huijbers; Clare M. Isacke; Wouter Coppieters; Michel Georges; Carole Charlier

We herein describe the positional identification of a 2-bp deletion in the open reading frame of the MRC2 receptor causing the recessive Crooked Tail Syndrome in cattle. The resulting frame-shift reveals a premature stop codon that causes nonsense-mediated decay of the mutant messenger RNA, and the virtual absence of functional Endo180 protein in affected animals. Cases exhibit skeletal anomalies thought to result from impaired extracellular matrix remodeling during ossification, and as of yet unexplained muscular symptoms. We demonstrate that carrier status is very significantly associated with desired characteristics in the general population, including enhanced muscular development, and that the resulting heterozygote advantage caused a selective sweep which explains the unexpectedly high frequency (25%) of carriers in the Belgian Blue Cattle Breed.

Collaboration


Dive into the Carole Charlier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wanbo Li

University of Liège

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge