Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carole Cossu-Leguille is active.

Publication


Featured researches published by Carole Cossu-Leguille.


Environment International | 2003

Biomarkers and community indices as complementary tools for environmental safety.

Paule Vasseur; Carole Cossu-Leguille

Research on biomarkers as early bioindicators of perturbation in populations and individuals has been gaining ground over the last decade. This ecotoxicological approach relies on the fact that changes occur at low levels of organization before the community is affected and thus they can be monitored to assess environmental safety. Changes may concern behavior, physiology, biochemistry, or genomic structure and functioning, and may impair population dynamics in the long-term. Ecotoxicity studies based on biomarkers allow us to measure the impact of environmental stressors and to easily follow the evolution of the systems towards degradation or restoration. Over and above their use as simple indices of exposure to specific pollutants, biomarkers can give an insight into ecosystem health. The results of our experience in field studies involving ecotoxicologists and ecologists will be presented in order to illustrate the relevance of such an integrating strategy for environmental quality assessment.


Chemosphere | 2011

Seasonal variability of antioxidant biomarkers and energy reserves in the freshwater gammarid Gammarus roeseli

Sophie Sroda; Carole Cossu-Leguille

In gammarids, behavioural and biochemical biomarkers are commonly used in ecotoxicological studies. In our study, we have investigated seasonal variations of several biochemical biomarkers in Gammarus roeseli, a freshwater species. Organisms were sampled monthly over a 1-year period. Gender was distinguished to measure antioxidant enzyme activities like total glutathione peroxidase (GPxtot), selenium-dependent glutathione peroxidase (SeGPx) and catalase enzymes, lipoperoxidation end-product (malondialdehyde, MDA), and energy reserves with protein and lipid contents. In the same time, usual water physico-chemical parameters were measured at the sampling site. A based-gender difference was observed for parameters related to oxidative stress. Females showed higher antioxidant enzyme activities and lower MDA level than males. Parameters related to oxidative stress and energy reserves appeared correlated with temperature and physiological status of organisms. Females GPx activities were lower in autumn and winter when no breeding occurred. In both gender, MDA levels were correlated with temperature with an increase of lipoperoxidation in summer. Lipid contents were the lowest in summer and the highest in winter, probably due to the reproductive status of organisms and their feeding behaviour. Gender-based differences of biochemical parameters suggest a specific sensitivity of males and females in ecotoxicological experiments. Moreover, organisms could be more vulnerable in summer when MDA levels are high and energy reserves low. Deleterious effect of xenobiotics would be different with gender and season.


Environmental Research | 2012

Influence of gender and season on reduced glutathione concentration and energy reserves of Gammarus roeseli

Eric Gismondi; Jean-Nicolas Beisel; Carole Cossu-Leguille

As biomarkers are known to be influenced by biotic and abiotic factors (e.g. gender, temperature), we investigated over a one-year long sampling period, the influence of season and gender on reduced glutathione concentrations and its synthesis in the crustacean amphipod Gammarus roeseli. At the same time, we assessed energy reserves and malondialdehyde levels as toxic biomarker. Results have shown that, in both genders, reduced glutathione concentrations were inversely correlated to water temperature, and higher in females than in males whatever the season. Total lipid and glycogen contents were higher in females than in males, allowing females to have enough energy to assume the reproductive period and maintain high GSH concentrations for detoxification processes. Conversely, females have lower cell damages than males. These differences between genders could induce differential sensitivity in a contamination context, and thus affect the population. Females could resist better than males in contaminated environments, especially in spring when reduced glutathione concentration is the highest.


Chemosphere | 2010

Genotoxic effects of nickel, trivalent and hexavalent chromium on the Eisenia fetida earthworm.

Emilie Bigorgne; Carole Cossu-Leguille; Marc Bonnard; Johanne Nahmani

The aim of this study was to examine genotoxic effects of nickel (Ni=105 mg kg(-1)), trivalent and hexavalent chromium (Cr=491 mg kg(-1)) on the Eisenia fetida earthworm after 2 and 4d of exposure to two different spiked soils (an artificial (OECD) and a natural one). DNA damages were evaluated on the earthworms coelomocytes using the comet assay. After an exposure into OECD spiked soils, Ni did not induce genotoxic effect whereas Cr(III) and Cr(VI) revealed to be genotoxic after 2d of exposure. After 4d of exposure, only Cr(VI) still induced significant damages. In natural spiked soils, nickel and Cr(III) revealed to be genotoxic after 2 and 4d of exposure. Concerning Cr(VI) toxicity, all the earthworms died after 1d of exposure. These results underline the importance to take into account the nature and the speciation of metallic pollutants, although the experiment has been performed on spiked soil with higher bioavailibity than in contaminated natural soil.


Aquatic Toxicology | 2013

Behavioural and physiological responses of Gammarus fossarum (Crustacea Amphipoda) exposed to silver

J. Arce Funck; Michael Danger; Eric Gismondi; Carole Cossu-Leguille; François Guérold; Vincent Felten

The study aims at investigating the effects of silver (Ag), a re-emerging contaminant, on physiological and behavioural responses in Gammarus fossarum. In a first experiment, G. fossarum Ag LC50s were evaluated during 96 h under semi-static mode of exposure. Juveniles appeared to be more sensitive to Ag (LC5096h: 1.01 μg L(-1)) than ovigerous females (LC5096h: 1.9 μg L(-1)) and adult males (LC5096h: 2.2 μg L(-1)). In a second experiment, the physiological (osmo-/ionoregulation; antioxidant enzymes; lipid peroxidation (LPO)) and behavioural (locomotor activity and ventilation) responses of male G. fossarum exposed to Ag (0, 0.5, 1, 2, and 4 μg L(-1)) were investigated. The mortality and Ag bioconcentration of gammarids exposed to Ag were significantly higher than controls. Concerning physiological responses, a 48 h-exposure to Ag had no impact on catalase activity but led to a significant decrease of haemolymph osmolality and [Na(+)]. On the contrary, LPO, Se-GPx and Na(+)/K(+)-ATPase activity were significantly increased. Behavioural responses, such as locomotor and ventilatory activities, were also significantly reduced in Ag exposed gammarids. After 96 h-exposure, especially to 0.5 μg Ag L(-1), most responses (ventilation, locomotor activity, haemolymph osmolality and [Na(+)]) were even more pronounced and haemolymph [Cl(-)] was significantly decreased but, contrary to observations after 48 h-exposure, Na(+)/K(+)-ATPase activity was significantly reduced. Our results demonstrate the drastic effects of realistic [Ag] concentration (0.5 μg Ag L(-1)) on an ubiquitous and functionally important freshwater invertebrate (implied in detritus breakdown), but also strongly suggest an energetic reallocation to the detriment of locomotor activity and in favour of maintenance functions (i.e., osmoregulation and detoxification). These results highlight the risk represented by Ag and the need to perform integrated studies (at different scales, from individual to ecosystem).


Biomarkers | 2005

DNA damage (comet assay) and 8-oxodGuo (HPLC-EC) in relation to oxidative stress in the freshwater bivalve Unio tumidus

Sébastien Lemière; Carole Cossu-Leguille; Charissou Am; Paule Vasseur

The relationships between DNA damage and oxidative stress in the digestive gland, gills and haemocytes of the freshwater bivalve Unio tumidus were investigated. Two markers of genotoxicity were measured: DNA breaks by means of the comet assay, and oxidative DNA lesions by means of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) measured using high-performance liquid chromatography (HPLC) coupled to electrochemical detection. Lipid peroxidation was evaluated by measuring malondialdehyde (MDA) tissue levels. Effects were studied after exposure of bivalves for 6 days to benzo[a]pyrene (B[a]P) (50 and 100 μg l−1) and ferric iron (20 and 40 mg l−1), applied alone or in combination. Lipid peroxidation in the digestive gland and gills resulted from exposure to Fe3+ or B[a]P whatever the concentrations tested. DNA oxidatively formed lesions were induced in the two tissues at a higher level after B[a]P exposure than after Fe3+ treatment. No significant dose–response relationship was found with the two compounds and no synergistic effect was observed between Fe3+ and B[a]P. The gills appeared less sensitive than the digestive gland to DNA lesions expressed as 8-oxodGuo and comet results. Good correlations were noted between 8-oxodGuo and comet. MDA and DNA damage did not correlate as well, although it was stronger in the digestive gland than in the gills. Production of mucus by the gills likely served to prevent lesions by reducing the bioavailability of the chemicals tested, which could explain that dose–effect relationships and synergistic effects were not observed.


Aquatic Toxicology | 2015

Multibiomarker assessment of cerium dioxide nanoparticle (nCeO2) sublethal effects on two freshwater invertebrates, Dreissena polymorpha and Gammarus roeseli.

Maël Garaud; J. Trapp; Simon Devin; Carole Cossu-Leguille; Sandrine Pain-Devin; Vincent Felten; Laure Giambérini

Cerium nanoparticles (nCeO2) are widely used in everyday products, as fuel and paint additives. Meanwhile, very few studies on nCeO2 sublethal effects on aquatic organisms are available. We tried to fill this knowledge gap by investigating short-term effects of nCeO2 at environmentally realistic concentrations on two freshwater invertebrates; the amphipod Gammarus roeseli and the bivalve Dreissena polymorpha, using an integrated multibiomarker approach to detect early adverse effects of nCeO2 on organism biology. Differences in the behaviour of the organisms and of nanoparticles in the water column led to differential nCeO2 bioaccumulations, G. roeseli accumulating more cerium than D. polymorpha. Exposure to nCeO2 led to decreases in the size of the lysosomal system, catalase activity and lipoperoxidation in mussel digestive glands that could result from nCeO2 antioxidant properties, but also negatively impacted haemolymph ion concentrations. At the same time, no strong adverse effects of nCeO2 could be observed on G. roeseli. Further experiments will be necessary to confirm the absence of severe nCeO2 adverse effects in long-term environmentally realistic conditions.


Aquatic Toxicology | 2014

Towards a better understanding of biomarker response in field survey: A case study in eight populations of zebra mussels

Sandrine Pain-Devin; Carole Cossu-Leguille; Alain Geffard; Laure Giambérini; Thierry Jouenne; Laëtitia Minguez; B. Naudin; Marc Parant; François Rodius; Philippe Rousselle; K. Tarnowska; Claire Daguin-Thiébaut; Frédérique Viard; Simon Devin

In order to provide reliable information about responsiveness of biomarkers during environmental monitoring, there is a need to improve the understanding of inter-population differences. The present study focused on eight populations of zebra mussels and aimed to describe how variable are biomarkers in different sampling locations. Biomarkers were investigated and summarised through the Integrated Biomarker Response (IBR index). Inter-site differences in IBR index were analysed through comparisons with morphological data, proteomic profiles and genetic background of the studied populations. We found that the IBR index was a good tool to inform about the status of sites. It revealed higher stress in more polluted sites than in cleaner ones. It was neither correlated to proteomic profiles nor to genetic background, suggesting a stronger influence of environment than genes. Meanwhile, morphological traits were related to both environment and genetic background influence. Together these results attest the benefit of using biological tools to better illustrate the status of a population and highlight the need of consider inter-population difference in their baselines.


Science of The Total Environment | 2013

Speciation and bioavailability of dissolved copper in different freshwaters: Comparison of modelling, biological and chemical responses in aquatic mosses and gammarids

Adeline Bourgeault; Philippe Ciffroy; Cédric Garnier; Carole Cossu-Leguille; Jean-François Masfaraud; Rayna Charlatchka; Jean-Marie Garnier

Biological and chemical measurements were performed in mesocosms to investigate the bioavailability of copper, with a greater emphasis on the effects of competing ions and copper speciation. Measurements were achieved in three different natural waters for two aquatic species (Gammarus pulex and Fontinalis antipyretica) along a copper gradient concentration: natural concentration, spiked at 5 and 15 μg L(-1). Aquatic mosses exhibited high enrichment rates that were above the background levels compared to gammarids. The accumulation of copper in F. antipyretica is better correlated to the weakly complexed copper concentrations measured using differential pulse anodic stripping voltammetry (DPASV) and diffusive gradient in thin film (DGT) than to the free copper concentration measured using an ion selective electrode (ISE). In unspiked natural waters, the presence of dissolved organic ligands strongly controls the metal speciation and consequently largely minimised the impact of competing cations on the accumulation of Cu in mosses. Furthermore, the BioMet Biotic Ligand Model (BLM) successfully describes the site-specific copper bioaccumulation for the freshwater mosses studied. However, the comparison of the results with a previous study appears to indicate that the adsorption/desorption of Cu in mosses is impacted by seasons. This highlights a limit of the BioMet model in which the physiological state of aquatic organisms is not considered. No toxic effect of Cu exposure on lipid peroxidation was observed in the mosses and gammarids regardless of the site and the concentration considered. However, the oxidative stress measured in the mosses via their guaiacol peroxidase (GPX) activity increased in the case where internalised Cu reached maximal values, which suggests a threshold effect on the GPX activity.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2013

The automated micronucleus assay for early assessment of genotoxicity in drug discovery.

Karen Tilmant; Helga Gerets; P. De Ron; Carole Cossu-Leguille; Paule Vasseur; S. Dhalluin; Franck Atienzar

Recent publications on the automated in vitro micronucleus assay show predictive values higher than 85% for the classification of in vitro aneugens, clastogens and non-genotoxic compounds. In the present work, the CHO-k1 micronucleus assay in combination with cellular imaging was further evaluated. Firstly, the effect of a range of S9 concentrations on micronucleus formation and cytotoxicity was investigated. Subsequently, the reproducibility and predictivity of the micronucleus assay on CHO-k1 cells was investigated with a set of four compounds. Then, a larger set of compounds (n=44) was tested on CHO-k1 cells and inter-laboratory correlation was calculated. Finally, cellular imaging was compared with flow cytometry for in vivo assessment of micronucleus formation. The concentration of S9 had a significant impact on micronucleus formation and cytotoxicity. In addition, calculations of relative cell count (RCC) and cytokinesis-block proliferation index (CBPI) showed to be complementary to cytotoxicity assessment. The CHO-k1 micronucleus assay correctly classified the four reference compounds, with a dose-response relationship and low variability. Based on a larger set of compounds, the assay proved to be reliable with a sensitivity of 94% (n=31) and a specificity of 85% (n=13). A correlation coefficient of 97% was obtained when the lowest observable adverse effect levels (LOAELs) from our study were compared with those published by Diaz et al. (2007) [10]. In conclusion, the in vitro CHO-k1 micronucleus assay combined with cellular imaging is a predictive assay appropriate for genotoxicity screening at early stages of drug development. In addition, for in vivo assessment of micronucleus formation, we preferred to use flow cytometry rather than cell imaging.

Collaboration


Dive into the Carole Cossu-Leguille's collaboration.

Top Co-Authors

Avatar

Paule Vasseur

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sophie Sroda

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sébastien Lemière

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Devin

University of Lorraine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge