Carole Duboc
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carole Duboc.
Analytical Chemistry | 2012
Céline Barchasz; Florian Molton; Carole Duboc; Jean-Claude Leprêtre; Sébastien Patoux; Fannie Alloin
The lithium/sulfur battery is a promising electrochemical system that has a high theoretical capacity of 1675 mAh g(-1), but its discharge mechanism is well-known to be a complex multistep process. As the active material dissolves during cycling, this discharge mechanism was investigated through the electrolyte characterization. Using high-performance liquid chromatography, UV-visible absorption, and electron spin resonance spectroscopies, we investigated the electrolyte composition at different discharge potentials in a TEGDME-based electrolyte. In this study, we propose a possible mechanism for sulfur reduction consisting of three steps. Long polysulfide chains are produced during the first reduction step (2.4-2.2 V vs Li(+)/Li), such as S(8)(2-) and S(6)(2-), as evidenced by UV and HPLC data. The S(3)(•-) radical can also be found in solution because of a disproportionation reaction. S(4)(2-) is produced during the second reduction step (2.15-2.1 V vs Li(+)/Li), thus pointing out the gradual decrease of the polysulfide chain lengths. Finally, short polysulfide species, such as S(3)(2-), S(2)(2-), and S(2-), are produced at the end of the reduction process, i.e., between 2.1 and 1.9 V vs Li(+)/Li. The precipitation of the poorly soluble and insulating short polysulfide compounds was evidenced, thus leading to the positive electrode passivation and explaining the early end of discharge.
Journal of Physical Chemistry A | 2010
Carole Duboc; Dmitry Ganyushin; Kantharuban Sivalingam; Marie-Noëlle Collomb; Frank Neese
This paper presents a detailed evaluation of the performance of density functional theory (DFT) as well as complete active space self-consistent field (CASSCF)-based methods (CASSCF and second-order N-electron valence state perturbation theory, NEVPT2) to predict the zero-field splitting (zfs) parameters for a series of coordination complexes containing the Mn(III) ion. The physical origin of the experimentally determined zfss was investigated by studying the different contributions to these parameters. To this end, a series of mononuclear Mn(III) complexes was chosen for which the structures have been resolved by X-ray diffraction and the zfs parameters have been accurately determined by high-field EPR spectroscopy. In a second step, small models have been constructed to allow for a systematic assessment of the factors that dominate the variations in the observed zfs parameters and to establish magnetostructural correlations. Among the tested functionals, the best predictions have been obtained with B3LYP, followed by the nonhybrid BP86 functional, which in turn is more successful than the meta-hybrid GGA functional TPSSh. For the estimation of the spin-orbit coupling (SOC) part of the zfs, it was found that the coupled perturbed SOC approach CP is more successful than the Pederson-Khanna method. Concerning the spin-spin interaction (SS), the restricted open-shell Kohn-Sham (ROKS) approach led to a slightly better agreement with the experiment than the unrestricted KS (UKS) approach. The ab initio state-averaged CASSCF (SA-CASSCF) method with a minimal active space and the most recent implementation that treats the SOC and SS contributions on an equal footing provides the best predictions for the zfs. The analysis demonstrates that the major contribution to the axial zfs parameter (D) originates from the SOC interaction but that the SS part is far from being negligible (between 10 and 20% of D). Importantly, the various excited triplet ligand field states account for roughly half of the value of D, contrary to popular ligand field models. Despite covering dynamic correlation contributions to the transition energies, NEVPT2 does not lead to large improvements in the results as the excitation energies of the Mn(III) d-d transitions are already fairly accurate at the SA-CASSCF level. For a given type of coordination sphere (e.g., elongated or compressed octahedron), the magnetic anisotropy of the Mn(III) ion, D, does not appear to be highly sensitive to the nature of the ligands, while the E/D ratio is notably affected by all octahedral distortions. Furthermore, the introduction of different halides into the coordination sphere of Mn(III) only leads to small effects on D. Nevertheless, it appears that oxygen-based ligands afford larger D values than nitrogen-based ligands.
Inorganic Chemistry | 2011
Martha A. Beckwith; Michael Roemelt; Marie-Noëlle Collomb; Carole Duboc; Tsu-Chien Weng; Uwe Bergmann; Pieter Glatzel; Frank Neese; Serena DeBeer
A systematic series of high-spin mononuclear Mn(II), Mn(III), and Mn(IV) complexes has been investigated by manganese Kβ X-ray emission spectroscopy (XES). The factors contributing to the Kβ main line and the valence to core region are discussed. The Kβ main lines are dominated by 3p-3d exchange correlation (spin state) effects, shifting to lower energy upon oxidation of Mn(II) to Mn(III) due to the decrease in spin state from S = 5/2 to S = 2, whereas the valence to core region shows greater sensitivity to the chemical environment surrounding the Mn center. A density functional theory (DFT) approach has been used to calculate the valence to core spectra and assess the contributions to the energies and intensities. The valence spectra are dominated by manganese np to 1s electric dipole-allowed transitions and are particularly sensitive to spin state and ligand identity (reflected primarily in the transition energies) as well as oxidation state and metal-ligand bond lengths (reflected primarily in the transition intensities). The ability to use these methods to distinguish different ligand contributions within a heteroleptic coordination sphere is highlighted. The similarities and differences between the current Mn XES study and previous studies of Fe XES investigations are discussed. These findings serve as an important calibration for future applications to manganese active sites in biological and chemical catalysis.
Inorganic Chemistry | 2012
Michael Roemelt; Martha A. Beckwith; Carole Duboc; Marie-Noëlle Collomb; Frank Neese; Serena DeBeer
A series of manganese coordination compounds has been investigated by X-ray absorption spectroscopy (XAS). The K-pre-edge spectra are interpreted with the aid of time-dependent density functional theory (TD-DFT). This method was calibrated for the prediction of manganese K-pre-edges with different functionals. Moreover the nature of all observed features could be identified and classified according to the corresponding set of acceptor orbitals, either 1s to 3d transitions or metal-to-ligand charge transfer (MLCT) bands. The observable MLCT bands are further divided into features that correspond to transitions into empty π* orbitals of π-donor ligands and those of π-acceptor ligands. The ability to computationally reproduce the observed features at the correct relative transition energy is strongly dependent on the nature of the transition. A detailed analysis of the electronic structure of a series of Mn coordination compounds reveals that the different classes of observable transitions provide added insight into metal-ligand bonding interactions.
Angewandte Chemie | 2014
Marc Bourrez; Maylis Orio; Florian Molton; Hervé Vezin; Carole Duboc; Alain Deronzier; Sylvie Chardon-Noblat
A key intermediate in the electroconversion of carbon dioxide to carbon monoxide, catalyzed by a manganese tris(carbonyl) complex, is characterized. Different catalytic pathways and their potential reaction mechanisms are investigated using a large range of experimental and computational techniques. Sophisticated spectroscopic methods including UV/Vis absorption and pulsed-EPR techniques (2P-ESEEM and HYSCORE) were combined together with DFT calculations to successfully identify a key intermediate in the catalytic cycle of CO2 reduction. The results directly show the formation of a metal-carboxylic acid-CO2 adduct after oxidative addition of CO2 and H(+) to a Mn(0) carbonyl dimer, an unexpected intermediate.
Inorganic Chemistry | 2010
Jean-Daniel Compain; Pierre Mialane; Anne Dolbecq; Israel Martyr Mbomekalle; Jérôme Marrot; Francis Sécheresse; Carole Duboc; Eric Rivière
The asymmetric Cr(III) polyoxometalate complex Cs(10)[(gamma-SiW(10)O(36))(2)(Cr(OH)(H(2)O))(3)] x 17 H(2)O (1) has been synthesized in water under atmospheric pressure from the trinuclear precursor [Cr(3)(CH(3)COO)(7)(OH)(2)] and the divacant ligand [gamma-SiW(10)O(36)](8-). Complex 1 is built up of two [gamma-SiW(10)O(36)](8-) Keggin units sandwiching a trinuclear {(Cr(III)(OH)(H(2)O))(3)} fragment where the paramagnetic centers are bridged by three mu-OH ligands forming a nearly isosceles triangle. The magnetic properties of this spin-frustrated system have thus been interpreted considering a 2-J Hamiltonian showing that the Cr(III) ions are antiferromagnetically coupled and that 1 possesses an S = 3/2 ground state with an S = 1/2 first excited state located at 11 cm(-1). These results have been confirmed by EPR spectroscopy measurements (Q-band), which have also enabled the quantification of the electronic parameters characterizing the quadruplet spin ground state. The magnitude of the magnetic exchange interactions and the nature of the ground state are discussed in light of previously reported isosceles triangular S = 3/2 clusters. UV-visible and electrochemical studies have shown that 1 is stable in aqueous media in a 1-7 pH range. This stability is chemically confirmed by the study of the reactivity of 1 with La(III) cations, which has allowed the isolation of the Cs(4)[(gamma-SiW(10)O(36))(2)(Cr(OH)(H(2)O))(3)(La(H(2)O)(7))(2)] x 20 H(2)O compound (2). Indeed, during the synthetic process of this 3d-4f system, the integrity of the [(gamma-SiW(10)O(36))(2)(Cr(OH)(H(2)O))(3)](10-) building unit constituting 1 is maintained despite the high oxophilic character of the La(III) ions. The single crystal X-ray diffraction study of 2 has revealed that in the solid state the rare earth cations connect these subunits, affording a 3d-4f double-chain monodimensional system.
Dalton Transactions | 2004
Fabrice Thomas; Olivier Jarjayes; Carole Duboc; Christian Philouze; Eric Saint-Aman; Jean-Louis Pierre
Ligands bearing two salicylidene imine moieties substituted in ortho and para positions by tert-butyl groups have been electrochemically oxidized into mono- and bis-phenoxyl radicals. The process involves an intramolecular proton coupled to electron transfer and affords a radical in which the oxygen atom is hydrogen-bonded to a protonated ammonium or iminium group. A weak intramolecular dipolar interaction exists between the two phenoxyl moieties in the bis-radical species. The copper(II) complexes of these ligands have been characterized and electrochemically oxidized. The mono-phenoxyl radical species are X-band EPR silent. The bis-phenoxyl radical species exhibits a (S= 3/2) ground state: it arises from a ferromagnetic exchange coupling between the two spins of the radicals and that of the copper(II) when the spacer is rigid enough; a flexible spacer such as ethylidene induces decomplexation of at least one phenoxyl group. Metal coordination is more efficient than hydrogen-bonding to enhance the chemical stability of the mono-phenoxyl radicals.
Nature Chemistry | 2016
Deborah Brazzolotto; Marcello Gennari; Nicolas Queyriaux; Trevor R. Simmons; Jacques Pécaut; Serhiy Demeshko; Franc Meyer; Maylis Orio; Vincent Artero; Carole Duboc
Hydrogen production through water splitting is one of the most promising solutions for the storage of renewable energy. [NiFe] hydrogenases are organometallic enzymes containing nickel and iron centres that catalyse hydrogen evolution with performances that rival those of platinum. These enzymes provide inspiration for the design of new molecular catalysts that do not require precious metals. However, all heterodinuclear NiFe models reported so far do not reproduce the Ni-centred reactivity found at the active site of [NiFe] hydrogenases. Here, we report a structural and functional NiFe mimic that displays reactivity at the Ni site. This is shown by the detection of two catalytic intermediates that reproduce structural and electronic features of the Ni-L and Ni-R states of the enzyme during catalytic turnover. Under electrocatalytic conditions, this mimic displays high rates for H2 evolution (second-order rate constant of 2.5 × 104 M-1 s-1; turnover frequency of 250 s-1 at 10 mM H+ concentration) from mildly acidic solutions.
Inorganic Chemistry | 2012
Hani El Moll; Wei Zhu; Eric Oldfield; L. Marleny Rodriguez-Albelo; Pierre Mialane; Jérôme Marrot; Neus Vila; Israel Martyr Mbomekalle; Eric Rivière; Carole Duboc; Anne Dolbecq
We report the synthesis and characterization of eight new Mo, W, or V-containing polyoxometalate (POM) bisphosphonate complexes with metal nuclearities ranging from 1 to 6. The compounds were synthesized in water by treating Mo(VI), W(VI), V(IV), or V(V) precursors with biologically active bisphosphonates H(2)O(3)PC(R)(OH)PO(3)H(2) (R = C(3)H(6)NH(2), Ale; R = CH(2)S(CH(3))(2), Sul and R = C(4)H(5)N(2), Zol, where Ale = alendronate, Sul = (2-Hydroxy-2,2-bis-phosphono-ethyl)-dimethyl-sulfonium and Zol = zoledronate). Mo(6)(Sul)(2) and Mo(6)(Zol)(2) contain two trinuclear Mo(VI) cores which can rotate around a central oxo group while Mo(Ale)(2) and W(Ale)(2) are mononuclear species. In V(5)(Ale)(2) and V(5)(Zol)(2) a central V(IV) ion is surrounded by two V(V) dimers bound to bisphosphonate ligands. V(6)(Ale)(4) can be viewed as the condensation of one V(5)(Ale)(2) with one additional V(IV) ion and two Ale ligands, while V(3)(Zol)(3) is a triangular V(IV) POM. These new POM bisphosphonates complexes were all characterized by single-crystal X-ray diffraction. The stability of the Mo and W POMs was studied by (31)P NMR spectroscopy and showed that all compounds except the mononuclear Mo(Ale)(2) and W(Ale)(2) were stable in solution. EPR measurements performed on the vanadium derivatives confirmed the oxidation state of the V ions and evidenced their stability in aqueous solution. Electrochemical studies on V(5)(Ale)(2) and V(5)(Zol)(2) showed reduction of V(V) to V(IV), and magnetic susceptibility investigations on V(3)(Zol)(3) enabled a detailed analysis of the magnetic interactions. The presence of zoledronate or vanadium correlated with the most potent activity (IC(50)~1-5 μM) against three human tumor cell lines.
Angewandte Chemie | 2009
Atanu Kumar Das; Biprajit Sarkar; Carole Duboc; Sabine Strobel; Jan Fiedler; Stanislav Záliš; Goutam Kumar Lahiri; Wolfgang Kaim
Six combinations of oxidation states are conceivable for the paramagnetic title complex. Single-crystal X-ray diffraction, spectroscopic analysis (IR, EPR at conventional and high frequency), and DFT calculations establish that it is the iminosemiquinone radical structure that is formed: [Ru(k)(NO(m))(Q(n))(terpy)](2+) (k = 2+, m = 1+, n = 1-).