Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carole Mathis is active.

Publication


Featured researches published by Carole Mathis.


BMC Systems Biology | 2012

Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks

Florian Martin; Ty M. Thomson; Alain Sewer; David A. Drubin; Carole Mathis; Dirk Weisensee; Dexter Pratt; Julia Hoeng; Manuel C. Peitsch

BackgroundHigh-throughput measurement technologies produce data sets that have the potential to elucidate the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological processes that have been perturbed at the mechanistic level. Here, a new approach is built on previous methodologies in which high-throughput data was interpreted using prior biological knowledge of cause and effect relationships. These relationships are structured into network models that describe specific biological processes, such as inflammatory signaling or cell cycle progression. This enables quantitative assessment of network perturbation in response to a given stimulus.ResultsFour complementary methods were devised to quantify treatment-induced activity changes in processes described by network models. In addition, companion statistics were developed to qualify significance and specificity of the results. This approach is called Network Perturbation Amplitude (NPA) scoring because the amplitudes of treatment-induced perturbations are computed for biological network models. The NPA methods were tested on two transcriptomic data sets: normal human bronchial epithelial (NHBE) cells treated with the pro-inflammatory signaling mediator TNFα, and HCT116 colon cancer cells treated with the CDK cell cycle inhibitor R547. Each data set was scored against network models representing different aspects of inflammatory signaling and cell cycle progression, and these scores were compared with independent measures of pathway activity in NHBE cells to verify the approach. The NPA scoring method successfully quantified the amplitude of TNFα-induced perturbation for each network model when compared against NF-κB nuclear localization and cell number. In addition, the degree and specificity to which CDK-inhibition affected cell cycle and inflammatory signaling were meaningfully determined.ConclusionsThe NPA scoring method leverages high-throughput measurements and a priori literature-derived knowledge in the form of network models to characterize the activity change for a broad collection of biological processes at high-resolution. Applications of this framework include comparative assessment of the biological impact caused by environmental factors, toxic substances, or drug treatments.


BMC Systems Biology | 2011

A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue

Walter K. Schlage; Jurjen W. Westra; Stephan Gebel; Natalie L. Catlett; Carole Mathis; Brian P. Frushour; Arnd Hengstermann; Aaron A. Van Hooser; Carine Poussin; Ben Wong; Michael Lietz; Jennifer Park; David Drubin; Emilija Veljkovic; Manuel C. Peitsch; Julia Hoeng; Renée Deehan

BackgroundHumans and other organisms are equipped with a set of responses that can prevent damage from exposure to a multitude of endogenous and environmental stressors. If these stress responses are overwhelmed, this can result in pathogenesis of diseases, which is reflected by an increased development of, e.g., pulmonary and cardiac diseases in humans exposed to chronic levels of environmental stress, including inhaled cigarette smoke (CS). Systems biology data sets (e.g., transcriptomics, phosphoproteomics, metabolomics) could enable comprehensive investigation of the biological impact of these stressors. However, detailed mechanistic networks are needed to determine which specific pathways are activated in response to different stressors and to drive the qualitative and eventually quantitative assessment of these data. A current limiting step in this process is the availability of detailed mechanistic networks that can be used as an analytical substrate.ResultsWe have built a detailed network model that captures the biology underlying the physiological cellular response to endogenous and exogenous stressors in non-diseased mammalian pulmonary and cardiovascular cells. The contents of the network model reflect several diverse areas of signaling, including oxidative stress, hypoxia, shear stress, endoplasmic reticulum stress, and xenobiotic stress, that are elicited in response to common pulmonary and cardiovascular stressors. We then tested the ability of the network model to identify the mechanisms that are activated in response to CS, a broad inducer of cellular stress. Using transcriptomic data from the lungs of mice exposed to CS, the network model identified a robust increase in the oxidative stress response, largely mediated by the anti-oxidant NRF2 pathways, consistent with previous reports on the impact of CS exposure in the mammalian lung.ConclusionsThe results presented here describe the construction of a cellular stress network model and its application towards the analysis of environmental stress using transcriptomic data. The proof-of-principle analysis described here, coupled with the future development of additional network models covering distinct areas of biology, will help to further clarify the integrated biological responses elicited by complex environmental stressors such as CS, in pulmonary and cardiovascular cells.


BMC Systems Biology | 2011

Construction of a computable cell proliferation network focused on non-diseased lung cells

Jurjen W. Westra; Walter K. Schlage; Brian P. Frushour; Stephan Gebel; Natalie L. Catlett; Wanjiang Han; Sean F. Eddy; Arnd Hengstermann; Andrea Matthews; Carole Mathis; Rosemarie B. Lichtner; Carine Poussin; Marja Talikka; Emilija Veljkovic; Aaron A. Van Hooser; Benjamin Wong; Michael J. Maria; Manuel C. Peitsch; Renée Deehan; Julia Hoeng

BackgroundCritical to advancing the systems-level evaluation of complex biological processes is the development of comprehensive networks and computational methods to apply to the analysis of systems biology data (transcriptomics, proteomics/phosphoproteomics, metabolomics, etc.). Ideally, these networks will be specifically designed to capture the normal, non-diseased biology of the tissue or cell types under investigation, and can be used with experimentally generated systems biology data to assess the biological impact of perturbations like xenobiotics and other cellular stresses. Lung cell proliferation is a key biological process to capture in such a network model, given the pivotal role that proliferation plays in lung diseases including cancer, chronic obstructive pulmonary disease (COPD), and fibrosis. Unfortunately, no such network has been available prior to this work.ResultsTo further a systems-level assessment of the biological impact of perturbations on non-diseased mammalian lung cells, we constructed a lung-focused network for cell proliferation. The network encompasses diverse biological areas that lead to the regulation of normal lung cell proliferation (Cell Cycle, Growth Factors, Cell Interaction, Intra- and Extracellular Signaling, and Epigenetics), and contains a total of 848 nodes (biological entities) and 1597 edges (relationships between biological entities). The network was verified using four published gene expression profiling data sets associated with measured cell proliferation endpoints in lung and lung-related cell types. Predicted changes in the activity of core machinery involved in cell cycle regulation (RB1, CDKN1A, and MYC/MYCN) are statistically supported across multiple data sets, underscoring the general applicability of this approach for a network-wide biological impact assessment using systems biology data.ConclusionsTo the best of our knowledge, this lung-focused Cell Proliferation Network provides the most comprehensive connectivity map in existence of the molecular mechanisms regulating cell proliferation in the lung. The network is based on fully referenced causal relationships obtained from extensive evaluation of the literature. The computable structure of the network enables its application to the qualitative and quantitative evaluation of cell proliferation using systems biology data sets. The network is available for public use.


Bioinformatics and Biology Insights | 2013

Construction of a computable network model for DNA damage, autophagy, cell death, and senescence.

Stephan Gebel; Rosemarie B. Lichtner; Brian P. Frushour; Walter K. Schlage; Vy Hoang; Marja Talikka; Arnd Hengstermann; Carole Mathis; Emilija Veljkovic; Michael J. Peck; Manuel C. Peitsch; Renée Deehan; Julia Hoeng; Jurjen W. Westra

Towards the development of a systems biology-based risk assessment approach for environmental toxicants, including tobacco products in a systems toxicology setting such as the “21st Century Toxicology”, we are building a series of computable biological network models specific to non-diseased pulmonary and cardiovascular cells/tissues which capture the molecular events that can be activated following exposure to environmental toxicants. Here we extend on previous work and report on the construction and evaluation of a mechanistic network model focused on DNA damage response and the four main cellular fates induced by stress: autophagy, apoptosis, necroptosis, and senescence. In total, the network consists of 34 sub-models containing 1052 unique nodes and 1538 unique edges which are supported by 1231 PubMed-referenced literature citations. Causal node-edge relationships are described using the Biological Expression Language (BEL), which allows for the semantic representation of life science relationships in a computable format. The Network is provided in .XGMML format and can be viewed using freely available network visualization software, such as Cytoscape.


Bioinformatics and Biology Insights | 2013

A Modular Cell-Type Focused Inflammatory Process Network Model for Non-Diseased Pulmonary Tissue

Jurjen W. Westra; Walter K. Schlage; Arnd Hengstermann; Stephan Gebel; Carole Mathis; Ty M. Thomson; Ben Wong; Vy Hoang; Emilija Veljkovic; Michael J. Peck; Rosemarie B. Lichtner; Dirk Weisensee; Marja Talikka; Renée Deehan; Julia Hoeng; Manuel C. Peitsch

Exposure to environmental stressors such as cigarette smoke (CS) elicits a variety of biological responses in humans, including the induction of inflammatory responses. These responses are especially pronounced in the lung, where pulmonary cells sit at the interface between the bodys internal and external environments. We combined a literature survey with a computational analysis of multiple transcriptomic data sets to construct a computable causal network model (the Inflammatory Process Network (IPN)) of the main pulmonary inflammatory processes. The IPN model predicted decreased epithelial cell barrier defenses and increased mucus hypersecretion in human bronchial epithelial cells, and an attenuated pro-inflammatory (M1) profile in alveolar macrophages following exposure to CS, consistent with prior results. The IPN provides a comprehensive framework of experimentally supported pathways related to CS-induced pulmonary inflammation. The IPN is freely available to the scientific community as a resource with broad applicability to study the pathogenesis of pulmonary disease.


BioMed Research International | 2013

Systems Approaches Evaluating the Perturbation of Xenobiotic Metabolism in Response to Cigarette Smoke Exposure in Nasal and Bronchial Tissues

Anita Iskandar; Florian Martin; Marja Talikka; Walter K. Schlage; Radina Kostadinova; Carole Mathis; Julia Hoeng; Manuel C. Peitsch

Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the perturbation upon CS exposure in bronchial and nasal epithelial cells in vivo samples obtained from smokers. Our observation suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure xenobiotic responses in bronchial tissue.


Toxicology Mechanisms and Methods | 2014

In vitro systems toxicology approach to investigate the effects of repeated cigarette smoke exposure on human buccal and gingival organotypic epithelial tissue cultures

Walter K. Schlage; Anita Iskandar; Radina Kostadinova; Yang Xiang; Alain Sewer; Shoaib Majeed; Diana Kuehn; Stefan Frentzel; Marja Talikka; Marcel Geertz; Carole Mathis; Nikolai V. Ivanov; Julia Hoeng; Manuel C. Peitsch

Abstract Smoking has been associated with diseases of the lung, pulmonary airways and oral cavity. Cytologic, genomic and transcriptomic changes in oral mucosa correlate with oral pre-neoplasia, cancer and inflammation (e.g. periodontitis). Alteration of smoking-related gene expression changes in oral epithelial cells is similar to that in bronchial and nasal epithelial cells. Using a systems toxicology approach, we have previously assessed the impact of cigarette smoke (CS) seen as perturbations of biological processes in human nasal and bronchial organotypic epithelial culture models. Here, we report our further assessment using in vitro human oral organotypic epithelium models. We exposed the buccal and gingival organotypic epithelial tissue cultures to CS at the air–liquid interface. CS exposure was associated with increased secretion of inflammatory mediators, induction of cytochrome P450s activity and overall weak toxicity in both tissues. Using microarray technology, gene-set analysis and a novel computational modeling approach leveraging causal biological network models, we identified CS impact on xenobiotic metabolism-related pathways accompanied by a more subtle alteration in inflammatory processes. Gene-set analysis further indicated that the CS-induced pathways in the in vitro buccal tissue models resembled those in the in vivo buccal biopsies of smokers from a published dataset. These findings support the translatability of systems responses from in vitro to in vivo and demonstrate the applicability of oral organotypical tissue models for an impact assessment of CS on various tissues exposed during smoking, as well as for impact assessment of reduced-risk products.


Chemical Research in Toxicology | 2016

In Vitro Systems Toxicology Assessment of a Candidate Modified Risk Tobacco Product Shows Reduced Toxicity Compared to That of a Conventional Cigarette.

Ignacio Gonzalez-Suarez; Florian Martin; Emmanuel Guedj; Stefano Acali; Stephanie Johne; Remi Dulize; Karine Baumer; Dariusz Peric; Didier Goedertier; Stefan Frentzel; Nikolai V. Ivanov; Carole Mathis; Julia Hoeng; Manuel C. Peitsch

Cigarette smoke increases the risk for respiratory and other diseases. Although smoking prevalence has declined over the years, millions of adults choose to continue to smoke. Modified risk tobacco products (MRTPs) are potentially valuable tools for adult smokers that are unwilling to quit their habit. Here, we investigated the biological impact of a candidate MRTP, the tobacco-heating system (THS) 2.2, compared to that of the 3R4F reference cigarette in normal primary human bronchial epithelial cells. Chemical characterization of the THS 2.2 aerosol showed reduced levels of harmful constituents compared to those of a combustible cigarette. Multiparametric indicators of cellular toxicity were measured via real-time cellular analysis and high-content screening. The study was complemented by a whole transcriptome analysis, followed by computational approaches to identify and quantify perturbed molecular pathways. Exposure of cells to 3R4F cigarette smoke resulted in a dose-dependent response in most toxicity end points. Moreover, we found a significant level of perturbation in multiple biological pathways, particularly in those related to cellular stress. By contrast, exposure to THS 2.2 resulted in an overall lower biological impact. At 3R4F doses, no toxic effects were observed. A toxic response was observed for THS 2.2 in some functional end points, but the responses occurred at doses between 3 and 15 times higher than those of 3R4F. The level of biological network perturbation was also significantly reduced following THS 2.2 aerosol exposure compared to that of 3R4F cigarette smoke. Taken together, the data suggest that THS 2.2 aerosol is less toxic than combustible cigarette smoke and thus may have the potential to reduce the risk for smoke-related diseases.


Toxicological Sciences | 2015

Impact Assessment of Cigarette Smoke Exposure on Organotypic Bronchial Epithelial Tissue Cultures: A Comparison of Mono-Culture and Coculture Model Containing Fibroblasts

Anita R. Iskandar; Yang Xiang; Stefan Frentzel; Marja Talikka; Patrice Leroy; Diana Kuehn; Emmanuel Guedj; Florian Martin; Carole Mathis; Nikolai V. Ivanov; Manuel C. Peitsch; Julia Hoeng

Organotypic 3D cultures of epithelial cells are grown at the air–liquid interface (ALI) and resemble the in vivo counterparts. Although the complexity of in vivo cellular responses could be better manifested in coculture models in which additional cell types such as fibroblasts were incorporated, the presence of another cell type could mask the response of the other. This study reports the impact of whole cigarette smoke (CS) exposure on organotypic mono- and coculture models to evaluate the relevancy of organotypic models for toxicological assessment of aerosols. Two organotypic bronchial models were directly exposed to low and high concentrations of CS of the reference research cigarette 3R4F: monoculture of bronchial epithelial cells without fibroblasts (BR) and coculture with fibroblasts (BRF) models. Adenylate kinase (AK)-based cytotoxicity, cytochrome P450 (CYP) 1A1/1B1 activity, tissue histology, and concentrations of secreted mediators into the basolateral media, as well as transcriptomes were evaluated following the CS exposure. The results demonstrated similar impact of CS on the AK-based cytotoxicity, CYP1A1/1B1 activity, and tissue histology in both models. However, a greater number of secreted mediators was identified in the basolateral media of the monoculture than in the coculture models. Furthermore, annotation analysis and network-based systems biology analysis of the transcriptomic profiles indicated a more prominent cellular stress and tissue damage following CS in the monoculture epithelium model without fibroblasts. Finally, our results indicated that an in vivo smoking-induced xenobiotic metabolism response of bronchial epithelial cells was better reflected from the in vitro CS-exposed coculture model.


International Journal of Toxicology | 2014

The Response of Human Nasal and Bronchial Organotypic Tissue Cultures to Repeated Whole Cigarette Smoke Exposure

Marja Talikka; Radina Kostadinova; Yang Xiang; Carole Mathis; Alain Sewer; Shoaib Majeed; Diana Kuehn; Stefan Frentzel; Celine Merg; Marcel Geertz; Florian Martin; Nikolai V. Ivanov; Manuel C. Peitsch; Julia Hoeng

Exposure to cigarette smoke (CS) is linked to the development of respiratory diseases, and there is a need to understand the mechanisms whereby CS causes damage. Although animal models have provided valuable insights into smoking-related respiratory tract damage, modern toxicity testing calls for reliable in vitro models as alternatives for animal experimentation. We report on a repeated whole mainstream CS exposure of nasal and bronchial organotypic tissue cultures that mimic the morphological, physiological, and molecular attributes of the human respiratory tract. Despite the similar cellular staining and cytokine secretion in both tissue types, the transcriptomic analyses in the context of biological network models identified similar and diverse biological processes that were impacted by CS-exposed nasal and bronchial cultures. Our results demonstrate that nasal and bronchial tissue cultures are appropriate in vitro models for the assessment of CS-induced adverse effects in the respiratory system and promising alternative to animal experimentation.

Collaboration


Dive into the Carole Mathis's collaboration.

Top Co-Authors

Avatar

Nikolai V. Ivanov

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carine Poussin

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

Vincenzo Belcastro

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar

Remi Dulize

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita Iskandar

National Technical University of Athens

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonidas G. Alexopoulos

National Technical University of Athens

View shared research outputs
Researchain Logo
Decentralizing Knowledge