Carole Poitry-Yamate
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carole Poitry-Yamate.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Seiko Ishida; Penelope Andreux; Carole Poitry-Yamate; Johan Auwerx; Douglas Hanahan
Significance This paper describes the mechanism by which copper mediates the interplay between the two energy-producing pathways, respiration and glycolysis. Many tumors produce increased levels of lactate, even when oxygen abounds, reflecting aerobic glycolysis (“Warburg effect”), whereas most normal tissues solely use respiration. We demonstrate that reducing systemic copper with a chelating drug impaired mitochondrial energy metabolism and decreased ATP levels despite induction of glycolysis. We propose that the metabolic phenotype of tumors is modulated in part by variable levels of copper in tumor microenvironment. Our work identifies copper as a tumor promoter by demonstrating that chronic exposure to elevated levels of copper in drinking water—to the maximum allowed in public water supplies—accelerates tumor growth in mice. Copper is an essential trace element, the imbalances of which are associated with various pathological conditions, including cancer, albeit via largely undefined molecular and cellular mechanisms. Here we provide evidence that levels of bioavailable copper modulate tumor growth. Chronic exposure to elevated levels of copper in drinking water, corresponding to the maximum allowed in public water supplies, stimulated proliferation of cancer cells and de novo pancreatic tumor growth in mice. Conversely, reducing systemic copper levels with a chelating drug, clinically used to treat copper disorders, impaired both. Under such copper limitation, tumors displayed decreased activity of the copper-binding mitochondrial enzyme cytochrome c oxidase and reduced ATP levels, despite enhanced glycolysis, which was not accompanied by increased invasiveness of tumors. The antiproliferative effect of copper chelation was enhanced when combined with inhibitors of glycolysis. Interestingly, larger tumors contained less copper than smaller tumors and exhibited comparatively lower activity of cytochrome c oxidase and increased glucose uptake. These results establish copper as a tumor promoter and reveal that varying levels of copper serves to regulate oxidative phosphorylation in rapidly proliferating cancer cells inside solid tumors. Thus, activation of glycolysis in tumors may in part reflect insufficient copper bioavailability in the tumor microenvironment.
Journal of Clinical Investigation | 2013
Pascal Seyer; David Vallois; Carole Poitry-Yamate; Frédéric Schütz; Salima Metref; David Tarussio; Pierre Maechler; Bart Staels; Bernard Lanz; Rolf Grueter; Julie Decaris; Scott Turner; Anabela Da Costa; Frédéric Preitner; Kaori Minehira; Marc Foretz; Bernard Thorens
Liver glucose metabolism plays a central role in glucose homeostasis and may also regulate feeding and energy expenditure. Here we assessed the impact of glucose transporter 2 (Glut2) gene inactivation in adult mouse liver (LG2KO mice). Loss of Glut2 suppressed hepatic glucose uptake but not glucose output. In the fasted state, expression of carbohydrate-responsive element-binding protein (ChREBP) and its glycolytic and lipogenic target genes was abnormally elevated. Feeding, energy expenditure, and insulin sensitivity were identical in LG2KO and control mice. Glucose tolerance was initially normal after Glut2 inactivation, but LG2KO mice exhibited progressive impairment of glucose-stimulated insulin secretion even though β cell mass and insulin content remained normal. Liver transcript profiling revealed a coordinated downregulation of cholesterol biosynthesis genes in LG2KO mice that was associated with reduced hepatic cholesterol in fasted mice and reduced bile acids (BAs) in feces, with a similar trend in plasma. We showed that chronic BAs or farnesoid X receptor (FXR) agonist treatment of primary islets increases glucose-stimulated insulin secretion, an effect not seen in islets from Fxr(-/-) mice. Collectively, our data show that glucose sensing by the liver controls β cell glucose competence and suggest BAs as a potential mechanistic link.
NMR in Biomedicine | 2010
Hongxia Lei; Carole Poitry-Yamate; Frédéric Preitner; Bernard Thorens; Rolf Gruetter
The hypothalamus plays an essential role in the central nervous system of mammals by among others regulating glucose homeostasis, food intake, temperature, and to some extent blood pressure. Assessments of hypothalamic metabolism using, e.g. 1H MRS in mouse models can provide important insights into its function. To date, direct in vivo 1H MRS measurements of hypothalamus have not been reported. Here, we report that in vivo single voxel measurements of mouse hypothalamus are feasible using 1H MRS at 14.1T. Localized 1H MR spectra from hypothalamus were obtained unilaterally (2–2.2 µL, VOI) and bilaterally (4–4.4 µL) with a quality comparable to that of hippocampus (3–3.5 µL). Using LCModel, a neurochemical profile consisting of 21 metabolites was quantified for both hypothalamus and hippocampus with most of the Cramér‐Rao lower bounds within 20%. Relative to the hippocampus, the hypothalamus was characterized by high γ‐aminobutryric acid and myo‐inositol, and low taurine concentrations. When studying transgenic mice with no glucose transporter isoform 8 expressed, small metabolic changes were observed, yet glucose homeostasis was well maintained. We conclude that a specific neurochemical profile of mouse hypothalamus can be measured by 1H MRS which will allow identifying and following metabolic alterations longitudinally in the hypothalamus of genetic modified models. Copyright
The Journal of Nuclear Medicine | 2014
Bernard Lanz; Carole Poitry-Yamate; Rolf Gruetter
Measurement of arterial input function is a restrictive aspect for quantitative 18F-FDG PET studies in rodents because of their small total blood volume and the related difficulties in withdrawing blood. Methods: In the present study, we took advantage of the high spatial resolution of a recent dedicated small-animal scanner to extract the input function from the 18F-FDG PET images in Sprague–Dawley rats (n = 4) and C57BL/6 mice (n = 5), using the vena cava. In the rat experiments, the validation of the image-derived input function (IDIF) method was made using an external microvolumetric blood counter as reference for the determination of the arterial input function, the measurement of which was confirmed by additional manually obtained blood samples. Correction for tracer bolus dispersion in blood between the vena cava and the arterial tree was applied. In addition, simulation studies were undertaken to probe the impact of the different IDIF extraction approaches on the determined cerebral metabolic rate of glucose (CMRGlc). In the mice measurements, the IDIF was used to compute the CMRGlc, which was compared with previously reported values, using the Patlak approach. Results: The presented IDIF from the vena cava showed a robust determination of CMRGlc using either the compartmental modeling or the Patlak approach, even without bolus dispersion correction or blood sampling, with an underestimation of CMRGlc of 7% ± 16% as compared with the reference data. Using this approach in the mice experiments, we measured a cerebral metabolic rate in the cortex of 0.22 ± 0.10 μmol/g/min (mean ± SD), in good agreement with previous 18F-FDG studies in the mouse brain. In the rat experiments, dispersion correction of the IDIF and additional scaling of the IDIF using a single manual blood sample enabled an optimized determination of CMRGlc, with an underestimation of 6% ± 7%. Conclusion: The vena cava time–activity curve is therefore a minimally invasive alternative for the measurement of the 18F-FDG input function in rats and mice, without the complications associated with repetitive blood sampling.
Journal of Neurochemistry | 2009
Carole Poitry-Yamate; Hongxia Lei; Rolf Gruetter
Specialized glucosensing neurons are present in the hypothalamus, some of which neighbor the median eminence, where the blood–brain barrier has been reported leaky. A leaky blood–brain barrier implies high tissue glucose levels and obviates a role for endothelial glucose transporters in the control of hypothalamic glucose concentration, important in understanding the mechanisms of glucose sensing We therefore addressed the question of blood–brain barrier integrity at the hypothalamus for glucose transport by examining the brain tissue‐to‐plasma glucose ratio in the hypothalamus relative to other brain regions. We also examined glycogenolysis in hypothalamus because its occurrence is unlikely in the potential absence of a hypothalamus–blood interface. Across all regions the concentration of glucose was comparable at a given plasma glucose concentration and was a near linear function of plasma glucose. At steady‐state, hypothalamic glucose concentration was similar to the extracellular hypothalamic glucose concentration reported by others. Hypothalamic glycogen fell at a rate of ∼1.5 μmol/g/h and remained present in substantial amounts. We conclude for the hypothalamus, a putative primary site of brain glucose sensing that: the rate‐limiting step for glucose transport into brain cells is at the blood–hypothalamus interface, and that glycogenolysis is consistent with a substantial blood ‐to‐ intracellular glucose concentration gradient.
Frontiers in Neuroenergetics | 2009
João M. N. Duarte; Florence D. Morgenthaler; Hongxia Lei; Carole Poitry-Yamate; Rolf Gruetter
Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (Gbrain) as function of plasma glucose (Gplasma) can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant Kt, apparent maximum rate constant Tmax, glucose consumption rate CMRglc, and the iso-inhibition constant Kii that suggests Gbrain as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where Gbrain was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by Kt ranging from 1.5 to 3.5 mM, Tmax/CMRglc from 4.6 to 5.6, and Kii from 51 to 149 mM. It was noteworthy that Kt was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by Gbrain, predicting that Gbrain eventually approaches a maximum concentration. However, since Kii largely exceeds Gplasma, iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.
Journal of Physics: Conference Series | 2009
Franz Pfeiffer; Christian David; Oliver Bunk; Carole Poitry-Yamate; Rolf Grütter; Bert Müller; Timm Weitkamp
We report advances and complementary results concerning a recently developed method for high-sensitivity grating-based x-ray phase-contrast tomography. In particular we demonstrate how the soft tissue sensitivity of the technique can be used to obtain in-vitro tomographic images of rat brain specimens. Contrary to our previous experiments with fixated specimen (chemically modified or formalin fixed), the present results on the rats brain are closer to the in-vivo situation. The findings are particularly important from a clinical point of view, since a similar approach using three gratings can be implemented with more readily available x-ray sources, such as standard x-ray tubes.
Journal of Neuroscience Research | 2013
Carole Poitry-Yamate; Alessandra Gianoncelli; Burkhard Kaulich; George Kourousias; Arthur W. Magill; Mario Lepore; Vincent Gajdosik; Rolf Gruetter
Glucose metabolism is difficult to image with cellular resolution in mammalian brain tissue, particularly with 18fluorodeoxy‐D‐glucose (FDG) positron emission tomography (PET). To this end, we explored the potential of synchrotron‐based low‐energy X‐ray fluorescence (LEXRF) to image the stable isotope of fluorine (F) in phosphorylated FDG (DG‐6P) at 1 μm2 spatial resolution in 3‐μm‐thick brain slices. The excitation‐dependent fluorescence F signal at 676 eV varied linearly with FDG concentration between 0.5 and 10 mM, whereas the endogenous background F signal was undetectable in brain. To validate LEXRF mapping of fluorine, FDG was administered in vitro and in vivo, and the fluorine LEXRF signal from intracellular trapped FDG‐6P over selected brain areas rich in radial glia was spectrally quantitated at 1 μm2 resolution. The subsequent generation of spatial LEXRF maps of F reproduced the expected localization and gradients of glucose metabolism in retinal Müller glia. In addition, FDG uptake was localized to periventricular hypothalamic tanycytes, whose morphological features were imaged simultaneously by X‐ray absorption. We conclude that the high specificity of photon emission from F and its spatial mapping at ≤1 μm resolution demonstrates the ability to identify glucose uptake at subcellular resolution and holds remarkable potential for imaging glucose metabolism in biological tissue.
Physiological Reports | 2014
Maxime Pellegrin; Karima Bouzourene; Carole Poitry-Yamate; Vladimir Mlynarik; François Feihl; Jean-François Aubert; Rolf Gruetter; Lucia Mazzolai
Peripheral arterial disease (PAD) is a common disease with increasing prevalence, presenting with impaired walking ability affecting patients quality of life. PAD epidemiology is known, however, mechanisms underlying functional muscle impairment remain unclear. Using a mouse PAD model, aim of this study was to assess muscle adaptive responses during early (1 week) and late (5 weeks) disease stages. Unilateral hindlimb ischemia was induced in ApoE−/− mice by iliac artery ligation. Ischemic limb perfusion and oxygenation (Laser Doppler imaging, transcutaneous oxygen pressure assessments) significantly decreased during early and late stage compared to pre‐ischemia, however, values were significantly higher during late versus early phase. Number of arterioles and arteriogenesis‐linked gene expression increased at later stage. Walking ability, evaluated by forced and voluntary walking tests, remained significantly decreased both at early and late phase without any significant improvement. Muscle glucose uptake ([18F]fluorodeoxyglucose positron emission tomography) significantly increased during early ischemia decreasing at later stage. Gene expression analysis showed significant shift in muscle M1/M2 macrophages and Th1/Th2 T cells balance toward pro‐inflammatory phenotype during early ischemia; later, inflammatory state returned to neutrality. Muscular M1/M2 shift inhibition by a statin prevented impaired walking ability in early ischemia. High‐energy phosphate metabolism remained unchanged (31‐Phosphorus magnetic resonance spectroscopy). Results show that rapid transient muscular inflammation contributes to impaired walking capacity while increased glucose uptake may be a compensatory mechanisms preserving immediate limb viability during early ischemia in a mouse PAD model. With time, increased ischemic limb perfusion and oxygenation assure muscle viability although not sufficiently to improve walking impairment. Subsequent decreased muscle glucose uptake may partly contribute to chronic walking impairment. Early inflammation inhibition and/or late muscle glucose impairment prevention are promising strategies for PAD management.
Nuklearmedizin-nuclear Medicine | 2011
Franz Buchegger; David Viertl; Sébastien Baechler; V. Dunet; M. Kosinski; Carole Poitry-Yamate; Curzio Rüegg; John O. Prior
AIM To visualize neovasculature and/or tumour integrin αvβ3 we selected the binding moiety Arg-Gly-Asp-D-Tyr-Lys (RGDyK) coupled to NODAGA for labeling with 68Ga. METHODS NODAGA-RGDyK (ABX) was labeled with the 68Ga eluate from the 68Ge generator IGG100 using the processor unit PharmTracer. Biodistribution was measured in female Hsd mice sacrificed 10, 30, 60 and 90 min after i.v. injection of 68Ga-NODAGA-RGDyK for OLINDA dosimetry extrapolated to humans. Tumour targeting was studied in SCID mice bearing A431 and other tumour transplants using microPET and biodistribution measurements. RESULTS Effective half-life of 68Ga-NODAGA-RGDyK was ~25 min for total body and most organs except liver and spleen that showed stable activity retention. With a bladder voiding interval of 0.5 h the calculated effective dose (ED) was 0.012 and 0.016 mSv/MBq for males and females, respectively. Rapid uptake within 10 min was observed in A431 tumours with dynamic PET followed by a slow release. Biodistribution measurements showed a 68Ga-NODAGA-RGDyK uptake in A431 tumours of 3.4±0.4 and 2.7±0.3%ID/g at 1 and 2 h, respectively. Similar uptakes were observed in a mouse and human breast and ovarian cancer xenografts. Co-injection of excess (5 mg/kg) unlabeled NODAGA-RGDyK with the radiotracer reduced tumour uptake at one hour to 0.23±0.01%ID/g, but similarly decreased uptake in normal organs as well. When unlabeled peptide was injected 15 min after 68Ga-NODAGA-RGDyK, uptake diminished particularly in tumour and adrenals, suggestive of a different binding mode compared with other normal tissues. CONCLUSION NODAGA-RGDyK was reliably labeled with 68Ga and revealed a predicted ED of 0.014 mSv/MBq. Tumour uptake was rapid and significant and was chased with unlabeled RGDyK in a similar manner as adrenal uptake.