Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolin A. Müller is active.

Publication


Featured researches published by Carolin A. Müller.


Science | 2011

Comparative Functional Genomics of the Fission Yeasts

Nicholas Rhind; Zehua Chen; Moran Yassour; Dawn Anne Thompson; Brian J. Haas; Naomi Habib; Ilan Wapinski; Sushmita Roy; Michael F. Lin; David I. Heiman; Sarah K. Young; Kanji Furuya; Yabin Guo; Alison L. Pidoux; Huei Mei Chen; Barbara Robbertse; Jonathan M. Goldberg; Keita Aoki; Elizabeth H. Bayne; Aaron M. Berlin; Christopher A. Desjardins; Edward Dobbs; Livio Dukaj; Lin Fan; Michael Fitzgerald; Courtney French; Sharvari Gujja; Klavs Wörgler Hansen; Daniel Keifenheim; Joshua Z. Levin

A combined analysis of genome sequence, structure, and expression gives insights into fission yeast biology. The fission yeast clade—comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus—occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.


Molecular Cell | 2013

Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment.

Toyoaki Natsume; Carolin A. Müller; Yuki Katou; Renata Retkute; Marek Gierliński; Hiroyuki Araki; J. Julian Blow; Katsuhiko Shirahige; Conrad A. Nieduszynski; Tomoyuki U. Tanaka

Summary Centromeres play several important roles in ensuring proper chromosome segregation. Not only do they promote kinetochore assembly for microtubule attachment, but they also support robust sister chromatid cohesion at pericentromeres and facilitate replication of centromeric DNA early in S phase. However, it is still elusive how centromeres orchestrate all these functions at the same site. Here, we show that the budding yeast Dbf4-dependent kinase (DDK) accumulates at kinetochores in telophase, facilitated by the Ctf19 kinetochore complex. This promptly recruits Sld3–Sld7 replication initiator proteins to pericentromeric replication origins so that they initiate replication early in S phase. Furthermore, DDK at kinetochores independently recruits the Scc2–Scc4 cohesin loader to centromeres in G1 phase. This enhances cohesin loading and facilitates robust pericentromeric cohesion in S phase. Thus, we have found the central mechanism by which kinetochores orchestrate early S phase DNA replication and robust sister chromatid cohesion at microtubule attachment sites.


Nucleic Acids Research | 2012

OriDB, the DNA replication origin database updated and extended

Cheuk C. Siow; Sian R. Nieduszynska; Carolin A. Müller; Conrad A. Nieduszynski

OriDB (http://www.oridb.org/) is a database containing collated genome-wide mapping studies of confirmed and predicted replication origin sites. The original database collated and curated Saccharomyces cerevisiae origin mapping studies. Here, we report that the OriDB database and web site have been revamped to improve user accessibility to curated data sets, to greatly increase the number of curated origin mapping studies, and to include the collation of replication origin sites in the fission yeast Schizosaccharomyces pombe. The revised database structure underlies these improvements and will facilitate further expansion in the future. The updated OriDB for S. cerevisiae is available at http://cerevisiae.oridb.org/ and for S. pombe at http://pombe.oridb.org/.


Genome Research | 2012

Conservation of replication timing reveals global and local regulation of replication origin activity

Carolin A. Müller; Conrad A. Nieduszynski

DNA replication initiates from defined locations called replication origins; some origins are highly active, whereas others are dormant and rarely used. Origins also differ in their activation time, resulting in particular genomic regions replicating at characteristic times and in a defined temporal order. Here we report the comparison of genome replication in four budding yeast species: Saccharomyces cerevisiae, S. paradoxus, S. arboricolus, and S. bayanus. First, we find that the locations of active origins are predominantly conserved between species, whereas dormant origins are poorly conserved. Second, we generated genome-wide replication profiles for each of these species and discovered that the temporal order of genome replication is highly conserved. Therefore, active origins are not only conserved in location, but also in activation time. Only a minority of these conserved origins show differences in activation time between these species. To gain insight as to the mechanisms by which origin activation time is regulated we generated replication profiles for a S. cerevisiae/S. bayanus hybrid strain and find that there are both local and global regulators of origin function.


Nature Structural & Molecular Biology | 2015

A global profile of replicative polymerase usage

Yasukazu Daigaku; Andrea Keszthelyi; Carolin A. Müller; Izumi Miyabe; Tony Brooks; Renata Retkute; Mike Hubank; Conrad A. Nieduszynski; Antony M. Carr

Three eukaryotic DNA polymerases are essential for genome replication. Polymerase (Pol) α–primase initiates each synthesis event and is rapidly replaced by processive DNA polymerases: Polɛ replicates the leading strand, whereas Polδ performs lagging-strand synthesis. However, it is not known whether this division of labor is maintained across the whole genome or how uniform it is within single replicons. Using Schizosaccharomyces pombe, we have developed a polymerase usage sequencing (Pu-seq) strategy to map polymerase usage genome wide. Pu-seq provides direct replication-origin location and efficiency data and indirect estimates of replication timing. We confirm that the division of labor is broadly maintained across an entire genome. However, our data suggest a subtle variability in the usage of the two polymerases within individual replicons. We propose that this results from occasional leading-strand initiation by Polδ followed by exchange for Polɛ.


BMC Genomics | 2013

High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome

Gianni Liti; Alex N. Nguyen Ba; Martin J. Blythe; Carolin A. Müller; Anders Bergström; Francisco A. Cubillos; Felix Dafhnis-Calas; Shima Khoshraftar; Sunir Malla; Neel Mehta; Cheuk C. Siow; Jonas Warringer; Alan M. Moses; Edward J. Louis; Conrad A. Nieduszynski

BackgroundComparative genomics is a formidable tool to identify functional elements throughout a genome. In the past ten years, studies in the budding yeast Saccharomyces cerevisiae and a set of closely related species have been instrumental in showing the benefit of analyzing patterns of sequence conservation. Increasing the number of closely related genome sequences makes the comparative genomics approach more powerful and accurate.ResultsHere, we report the genome sequence and analysis of Saccharomyces arboricolus, a yeast species recently isolated in China, that is closely related to S. cerevisiae. We obtained high quality de novo sequence and assemblies using a combination of next generation sequencing technologies, established the phylogenetic position of this species and considered its phenotypic profile under multiple environmental conditions in the light of its gene content and phylogeny.ConclusionsWe suggest that the genome of S. arboricolus will be useful in future comparative genomics analysis of the Saccharomyces sensu stricto yeasts.


Nucleic Acids Research | 2014

The dynamics of genome replication using deep sequencing

Carolin A. Müller; Michelle Hawkins; Renata Retkute; Sunir Malla; Ray Wilson; Martin J. Blythe; Ryuichiro Nakato; Makiko Komata; Katsuhiko Shirahige; Alessandro P. S. de Moura; Conrad A. Nieduszynski

Eukaryotic genomes are replicated from multiple DNA replication origins. We present complementary deep sequencing approaches to measure origin location and activity in Saccharomyces cerevisiae. Measuring the increase in DNA copy number during a synchronous S-phase allowed the precise determination of genome replication. To map origin locations, replication forks were stalled close to their initiation sites; therefore, copy number enrichment was limited to origins. Replication timing profiles were generated from asynchronous cultures using fluorescence-activated cell sorting. Applying this technique we show that the replication profiles of haploid and diploid cells are indistinguishable, indicating that both cell types use the same cohort of origins with the same activities. Finally, increasing sequencing depth allowed the direct measure of replication dynamics from an exponentially growing culture. This is the first time this approach, called marker frequency analysis, has been successfully applied to a eukaryote. These data provide a high-resolution resource and methodological framework for studying genome biology.


Science | 2017

Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome

Yue Shen; Yun Wang; Tai Chen; Feng Gao; Jianhui Gong; Dariusz Abramczyk; Roy Walker; Hongcui Zhao; Shihong Chen; Wei Liu; Carolin A. Müller; Adrien Paul-Dubois-Taine; Bonnie Alver; Giovanni Stracquadanio; Leslie A. Mitchell; Z.P. Luo; Yanqun Fan; Baojin Zhou; Bo Wen; Fengji Tan; Yujia Wang; Jin Zi; Zexiong Xie; Bingzhi Li; Kun Yang; Sarah M. Richardson; Hui Jiang; Christopher E. French; Conrad A. Nieduszynski; Romain Koszul

INTRODUCTION Although much effort has been devoted to studying yeast in the past few decades, our understanding of this model organism is still limited. Rapidly developing DNA synthesis techniques have made a “build-to-understand” approach feasible to reengineer on the genome scale. Here, we report on the completion of a 770-kilobase synthetic yeast chromosome II (synII). SynII was characterized using extensive Trans-Omics tests. Despite considerable sequence alterations, synII is virtually indistinguishable from wild type. However, an up-regulation of translational machinery was observed and can be reversed by restoring the transfer RNA (tRNA) gene copy number. RATIONALE Following the “design-build-test-debug” working loop, synII was successfully designed and constructed in vivo. Extensive Trans-Omics tests were conducted, including phenomics, transcriptomics, proteomics, metabolomics, chromosome segregation, and replication analyses. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium. RESULTS To efficiently construct megabase-long chromosomes, we developed an I-SceI–mediated strategy, which enables parallel integration of synthetic chromosome arms and reduced the overall integration time by 50% for synII. An I-SceI site is introduced for generating a double-strand break to promote targeted homologous recombination during mitotic growth. Despite hundreds of modifications introduced, there are still regions sharing substantial sequence similarity that might lead to undesirable meiotic recombinations when intercrossing the two semisynthetic chromosome arm strains. Induction of the I-SceI–mediated double-strand break is otherwise lethal and thus introduced a strong selective pressure for targeted homologous recombination. Since our strategy is designed to generate a markerless synII and leave the URA3 marker on the wild-type chromosome, we observed a tenfold increase in URA3-deficient colonies upon I-SceI induction, meaning that our strategy can greatly bias the crossover events toward the designated regions. By incorporating comprehensive phenotyping approaches at multiple levels, we demonstrated that synII was capable of powering the growth of yeast indistinguishably from wild-type cells (see the figure), showing highly consistent biological processes comparable to the native strain. Meanwhile, we also noticed modest but potentially significant up-regulation of the translational machinery. The main alteration underlying this change in expression is the deletion of 13 tRNA genes. A growth defect was observed in one very specific condition—high temperature (37°C) in medium with glycerol as a carbon source—where colony size was reduced significantly. We targeted and debugged this defect by two distinct approaches. The first approach involved phenotype screening of all intermediate strains followed by a complementation assay with wild-type sequences in the synthetic strain. By doing so, we identified a modification resulting from PCRTag recoding in TSC10, which is involved in regulation of the yeast high-osmolarity glycerol (HOG) response pathway. After replacement with wild-type TSC10, the defect was greatly mitigated. The other approach, debugging by SCRaMbLE, showed rearrangements in regions containing HOG regulation genes. Both approaches indicated that the defect is related to HOG response dysregulation. Thus, the phenotypic defect can be pinpointed and debugged through multiple alternative routes in the complex cellular interactome network. CONCLUSION We have demonstrated that synII segregates, replicates, and functions in a highly similar fashion compared with its wild-type counterpart. Furthermore, we believe that the iterative “design-build-test-debug” cycle methodology, established here, will facilitate progression of the Sc2.0 project in the face of the increasing synthetic genome complexity. SynII characterization. (A) Cell cycle comparison between synII and BY4741 revealed by the percentage of cells with separated CEN2-GFP dots, metaphase spindles, and anaphase spindles. (B) Replication profiling of synII (red) and BY4741 (black) expressed as relative copy number by deep sequencing


Cell Reports | 2013

High-Resolution Replication Profiles Define the Stochastic Nature of Genome Replication Initiation and Termination

Michelle Hawkins; Renata Retkute; Carolin A. Müller; Nazan Saner; Tomoyuki U. Tanaka; Alessandro P. S. de Moura; Conrad A. Nieduszynski

Summary Eukaryotic genome replication is stochastic, and each cell uses a different cohort of replication origins. We demonstrate that interpreting high-resolution Saccharomyces cerevisiae genome replication data with a mathematical model allows quantification of the stochastic nature of genome replication, including the efficiency of each origin and the distribution of termination events. Single-cell measurements support the inferred values for stochastic origin activation time. A strain, in which three origins were inactivated, confirmed that the distribution of termination events is primarily dictated by the stochastic activation time of origins. Cell-to-cell variability in origin activity ensures that termination events are widely distributed across virtually the whole genome. We propose that the heterogeneity in origin usage contributes to genome stability by limiting potentially deleterious events from accumulating at particular loci.


PLOS Genetics | 2013

A Link between ORC-Origin Binding Mechanisms and Origin Activation Time Revealed in Budding Yeast

Timothy Hoggard; Erika Shor; Carolin A. Müller; Conrad A. Nieduszynski; Catherine A. Fox

Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time.

Collaboration


Dive into the Carolin A. Müller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renata Retkute

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheuk C. Siow

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunir Malla

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge