Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolin N. Cardamone is active.

Publication


Featured researches published by Carolin N. Cardamone.


The Astrophysical Journal | 2012

IDENTIFYING LUMINOUS ACTIVE GALACTIC NUCLEI IN DEEP SURVEYS: REVISED IRAC SELECTION CRITERIA

J. L. Donley; Anton M. Koekemoer; M. Brusa; P. Capak; Carolin N. Cardamone; F. Civano; O. Ilbert; C. D. Impey; J. Kartaltepe; Takamitsu Miyaji; M. Salvato; D. B. Sanders; Jonathan R. Trump; G. Zamorani

Spitzer/IRAC selection is a powerful tool for identifying luminous active galactic nuclei (AGNs). For deep IRAC data, however, the AGN selection wedges currently in use are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGNs and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high-redshift star-forming galaxies selected via the BzK, distant red galaxy, Lyman-break galaxy, and submillimeter galaxy criteria. At QSO luminosities of log L_(2-10keV)(erg s^(–1)) ≥44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 38% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 52% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log N H (cm^(–2)) = 23.5 ± 0.4). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGNs, it is incomplete to low-luminosity and host-dominated AGNs.


Monthly Notices of the Royal Astronomical Society | 2009

Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies

Carolin N. Cardamone; Kevin Schawinski; Marc Sarzi; Steven P. Bamford; Nicola Bennert; Claudia M. Urry; Chris Lintott; William C. Keel; John K. Parejko; Robert C. Nichol; Daniel Thomas; Dan Andreescu; Phil Murray; M. Jordan Raddick; Anze Slosar; Alexander S. Szalay; Jan Vandenberg

We investigate a class of rapidly growing emission line galaxies, known as “Green Peas,” first noted by volunteers in the Galaxy Zoo project because of their peculiar bright green colour and small size, unresolved in SDSS imaging. Their appearance is due to very strong optical emission lines, namely [O III] �5007 ˚ A, with an unusually large equivalent width of up to �1000 ˚ A. We discuss a well-defined sample of 251 colour-selected ob jects, most of which are strongly star forming, although there are some AGN interlopers including 8 newly discovered Narrow Line Seyfert 1 galaxies. The star-forming Peas are low mass galaxies (M� 10 8.5 10 10 M⊙) with high star formation rates (� 10 M⊙yr −1 ), low metallicities (log[O/H] + 12 �8.7) and low reddening (E(B V) 6 0.25) and they reside in low density environments. They have some of the highest specific star for mation rates (up to � 10 −8 yr −1 ) seen in the local Universe, yielding doubling times for their stellar mass of hundreds of Myrs. The few star-forming Peas with HST imaging appear to have several clumps of bright star-forming regions and low surface density features that may indicate recent or ongoing mergers. The Peas are similar in size, mass, luminosity and metallicity to Luminous Blue Compact Galaxies. They are also similar to high redshift UV-luminous galaxies, e.g., Lymanbreak galaxies and Lyman-� emitters, and therefore provide a local laboratory with which to study the extreme star formation processes that occur in high-redshift galaxies. Studying starbursting galaxies as a function of redshift is essential to u nderstanding the build up of stellar mass in the Universe.


The Astrophysical Journal | 2011

HST WFC3/IR OBSERVATIONS OF ACTIVE GALACTIC NUCLEUS HOST GALAXIES AT z ∼ 2: SUPERMASSIVE BLACK HOLES GROW IN DISK GALAXIES*

Kevin Schawinski; Ezequiel Treister; C. Megan Urry; Carolin N. Cardamone; Brooke Simmons; Sukyoung K. Yi

We present the rest-frame optical morphologies of active galactic nucleus (AGN) host galaxies at 1.5 < z < 3, using near-infrared imaging from the Hubble Space Telescope Wide Field Camera 3, the first such study of AGN host galaxies at these redshifts. The AGNs are X-ray-selected from the Chandra Deep Field South and have typical luminosities of 1042 erg s–1<L X < 1044 erg s–1. Accreting black holes in this luminosity and redshift range account for a substantial fraction of the total space density and black hole mass growth over cosmic time; they thus represent an important mode of black hole growth in the universe. We find that the majority (~80%) of the host galaxies of these AGNs have low Sersic indices indicative of disk-dominated light profiles, suggesting that secular processes govern a significant fraction of the cosmic growth of black holes. That is, many black holes in the present-day universe grew much of their mass in disk-dominated galaxies and not in early-type galaxies or major mergers. The properties of the AGN host galaxies are furthermore indistinguishable from their parent galaxy population and we find no strong evolution in either effective radii or morphological mix between z ~ 2 and z ~ 0.05.


Monthly Notices of the Royal Astronomical Society | 2008

The UV colours of high-redshift early-type galaxies : evidence for recent star formation and stellar mass assembly over the last 8 billion years

Sugata Kaviraj; Sadegh Khochfar; Kevin Schawinski; Sukyoung K. Yi; Eric Gawiser; Joseph Silk; Shanil N. Virani; Carolin N. Cardamone; P. G. van Dokkum; Claudia M. Urry

We combine deep optical and NIR (UBV RIzJK) photometry from the Multiwavelength Survey by Yale-Chile (MUSYC) with redshifts from the COMBO-17 survey to perform a large-scale study of the rest-frame ultraviolet (UV ) properties of 674 high-redshift (0.5 0.5, implying that the UV is dominated by young stars, we find compelling evidence that early-types of all luminosities form stars over the lifetime of the Universe, although the bulk of their star formation is already complete at high redshift. This ‘tail-end’ of star formation is measurable and not negligible, with luminous ( 23 20.5) potentially forming 30-60 percent of their mass after z = 1. This, in turn, implies that intermediate-age stellar populations should be abundant in local early-type galaxies, as expected in hierarchical cosmology.


The Astrophysical Journal | 2008

Mid-infrared properties and color selection for X-ray-detected active galactic nuclei in the MUSYC extended Chandra Deep Field-South

Carolin N. Cardamone; C. Megan Urry; Maaike Damen; Pieter G. van Dokkum; Ezequiel Treister; Ivo Labbé; Shanil N. Virani; Paulina Lira; Eric Gawiser

We present the mid-infrared colors of X-ray-detected AGNs and explore mid-infrared selection criteria. Using a statistical matching technique, the likelihood ratio, over 900 IRAC counterparts were identified with a new MUSYC X-ray source catalog that includes ~1000 published X-ray sources in the Chandra Deep Field-South and Extended Chandra Deep Field-South. Most X-ray-selected AGNs have IRAC spectral shapes consistent with power-law slopes, -->fν να, and display a wide range of colors, -->-2 ≤ α ≤ 2. Although X-ray sources typically fit to redder (more negative α) power laws than non-X-ray-detected galaxies, more than 50% do have flat or blue (galaxy-like) spectral shapes in the observed 3-8 μm band. Only a quarter of the X-ray-selected AGNs detected at 24 μm are well fit by featureless red power laws in the observed 3.6-24 μm, likely the subset of our sample whose infrared spectra are dominated by emission from the central AGN region. Most IRAC color selection criteria fail to identify the majority of X-ray-selected AGNs, finding only the more luminous AGNs, the majority of which have broad emission lines. In deep surveys, these color selection criteria select 10%-20% of the entire galaxy population and miss many moderate-luminosity AGNs.We present the mid-infrared colors of X-ray-detected AGN and explore mid-infrared selection criteria. Using a statistical matching technique, the likelihood ratio, over 900 IRAC counterparts were identified with a new MUSYC X-ray source catalog that includes ~1000 published X-ray sources in the Chandra Deep Field-South and Extended Chandra Deep Field-South. Most X-ray-selected AGN have IRAC spectral shapes consistent with power-law slopes, f_{nu} ~ nu^{alpha}, and display a wide range of colors, -2 < alpha < 2. Although X-ray sources typically fit to redder (more negative alpha) power-laws than non-X-ray detected galaxies, more than 50% do have flat or blue (galaxy-like) spectral shapes in the observed 3-8 micron band. Only a quarter of the X-ray selected AGN detected at 24 micron are well fit by featureless red power laws in the observed 3.6-24 micron, likely the subset of our sample whose infrared spectra are dominated by emission from the central AGN region. Most IRAC color-selection criteria fail to identify the majority of X-ray-selected AGN, finding only the more luminous AGN, the majority of which have broad emission lines. In deep surveys, these color-selection criteria select 10-20% of the entire galaxy population and miss many moderate luminosity AGN.


The Astrophysical Journal | 2016

THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS

S. Marchesi; F. Civano; M. Elvis; M. Salvato; M. Brusa; A. Comastri; R. Gilli; G. Hasinger; G. Lanzuisi; Takamitsu Miyaji; Ezequiel Treister; Claudia M. Urry; C. Vignali; G. Zamorani; V. Allevato; N. Cappelluti; Carolin N. Cardamone; A. Finoguenov; Richard E. Griffiths; A. Karim; C. Laigle; Stephanie M. LaMassa; Knud Jahnke; P. Ranalli; Kevin Schawinski; Eva Schinnerer; J. D. Silverman; Vernesa Smolčić; Hyewon Suh; Benny Trakhtenbrot

We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 deg2 of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS, using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while sime54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.


Monthly Notices of the Royal Astronomical Society | 2012

Galaxy Zoo: the environmental dependence of bars and bulges in disc galaxies

Ramin A. Skibba; Karen L. Masters; Robert C. Nichol; Idit Zehavi; Ben Hoyle; Edward M. Edmondson; Steven P. Bamford; Carolin N. Cardamone; William C. Keel; Chris Lintott; Kevin Schawinski

We present an analysis of the environmental dependence of bars and bulges in disc galaxies, using a volume-limited catalogue of 15 810 galaxies at z < 0.06 from the Sloan Digital Sky Survey with visual morphologies from the Galaxy Zoo 2 project. We find that the likelihood of having a bar, or bulge, in disc galaxies increases when the galaxies have redder (optical) colours and larger stellar masses, and observe a transition in the bar and bulge likelihoods at M∗ = 2 × 10 10 M� , such that massive disc galaxies are more likely to host bars and bulges. In addition, while some barred and most bulge-dominated galaxies are on the ‘red sequence’ of the colour–magnitude diagram, we see a wider variety of colours for galaxies that host bars. We use galaxy clustering methods to demonstrate statistically significant environmental correlations of barred, and bulge-dominated, galaxies, from projected separations of 150 kpch −1 to 3 Mpch −1 . These environmental correlations appear to be independent of each other: i.e. bulge-dominated disc galaxies exhibit a significant bar–environment correlation, and barred disc galaxies show a bulge–environment correlation. As a result of sparse sampling tests – our sample is nearly 20 times larger than those used previously – we argue that previous studies that did not detect a bar–environment correlation were likely inhibited by small number statistics. We demonstrate that approximately half of the bar–environment correlation can be explained by the fact that more massive dark matter haloes host redder disc galaxies, which are then more likely to have bars; this fraction is estimated to be 50 ± 10 per cent from a mock catalogue analysis and 60 ± 5 per cent from the data. Likewise, we show that the environmental dependence of stellar mass can only explain a smaller fraction (25 ± 10 per cent) of the bar–environment correlation. Therefore, a significant fraction of our observed environmental dependence of barred galaxies is not due to colour or stellar mass dependences, and hence must be due to another galaxy property, such as gas content, or to environmental influences.


The Astrophysical Journal | 2010

HEAVILY OBSCURED ACTIVE GALACTIC NUCLEI IN HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

Ezequiel Treister; C. Megan Urry; Kevin Schawinski; Carolin N. Cardamone; David B. Sanders

We take advantage of the rich multiwavelength data available in the Chandra Deep Field South (CDF-S), including the 4 Ms Chandra observations (the deepest X-ray data to date), in order to search for heavily obscured low-luminosity active galactic nuclei (AGNs) among infrared-luminous galaxies. In particular, we obtained a stacked rest-frame X-ray spectrum for samples of galaxies binned in terms of their IR luminosity or stellar mass. We detect a significant signal at E ~ 1-8 keV, which we interpret as originating from a combination of emission associated with star formation processes at low energies combined with a heavily obscured AGN at E > 5 keV. We further find that the relative strength of this AGN signal decays with decreasing IR luminosity, indicating a higher AGN fraction for more luminous IR sources. Together, these results strongly suggest the presence of a large number of obscured AGNs in IR-luminous galaxies. Using samples binned in terms of stellar mass in the host galaxy, we find a significant excess at E = 6-7 keV for sources with M > 1011 M ☉, consistent with a large obscured AGN population in high mass galaxies. In contrast, no strong evidence of AGN activity was found for less-massive galaxies. The integrated intensity at high energies indicates that a significant fraction of the total black hole growth, ~22%, occurs in heavily obscured systems that are not individually detected in even the deepest X-ray observations. There are also indications that the number of low-luminosity, heavily obscured AGNs does not evolve significantly with redshift, in contrast to the strong evolution seen in higher luminosity sources.


Monthly Notices of the Royal Astronomical Society | 2015

Galaxy Zoo:are bars responsible for the feeding of active galactic nuclei at 0.2 < z < 1.0

Edmond Cheung; Jonathan R. Trump; E. Athanassoula; Steven P. Bamford; Eric F. Bell; Albert Bosma; Carolin N. Cardamone; Kevin R. V. Casteels; S. M. Faber; Jerome J. Fang; L. Fortson; Dale D. Kocevski; David C. Koo; Seppo Laine; Chris Lintott; Karen L. Masters; Thomas Melvin; Robert C. Nichol; Kevin Schawinski; Brooke Simmons; Rebecca J. Smethurst; Kyle W. Willett

We present a new study investigating whether active galactic nuclei (AGN) beyond the local universe are preferentially fed via large-scale bars. Our investigation combines data from Chandra and Galaxy Zoo: Hubble (GZH) in the AEGIS (All-wavelength Extended Groth strip International Survey), COSMOS (Cosmological Evolution Survey), and (Great Observatories Origins Deep Survey-South) GOODS-S surveys to create samples of face-on, disc galaxies at 0.2 1, our findings suggest that large-scale bars have likely never directly been a dominant fuelling mechanism for supermassive black hole growth.


The Astrophysical Journal | 2012

CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

Stacy H. Teng; Kevin Schawinski; C. Megan Urry; Dan W. Darg; Sugata Kaviraj; Kyuseok Oh; Erin Wells Bonning; Carolin N. Cardamone; William C. Keel; Chris Lintott; Brooke Simmons; Ezequiel Treister

We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M ☉ that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N H 1.1 × 1022 cm–2) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f 2-10 keV 1.2 × 10–13 erg s–1 cm–2) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

Collaboration


Dive into the Carolin N. Cardamone's collaboration.

Top Co-Authors

Avatar

Ezequiel Treister

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brooke Simmons

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge