Carolina Bonilla
University of Bristol
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carolina Bonilla.
Nature Genetics | 2008
Walter F. Bodmer; Carolina Bonilla
Here, we give a historical overview of the search for genetic variants that influence the susceptibility of an individual to a chronic disease, from RA Fishers seminal work to the current excitement of whole-genome association studies (WGAS). We then discuss the concepts behind the identification of common variants as disease causal factors and contrast them to the basic ideas that underlie the rare variant hypothesis. The identification of rare variants involves the careful selection of candidate genes to examine, the availability of highly efficient resequencing techniques and the appropriate assessment of the functional consequences of the implicated variant. We believe that this strategy can be successfully applied at present in order to unravel the contribution of rare variants to the multifactorial inheritance of common diseases, which could lead to the implementation of much needed preventative screening schemes.
American Journal of Human Genetics | 2003
Clive J. Hoggart; Esteban J. Parra; Mark D. Shriver; Carolina Bonilla; Rick A. Kittles; David G. Clayton; Paul McKeigue
To control for hidden population stratification in genetic-association studies, statistical methods that use marker genotype data to infer population structure have been proposed as a possible alternative to family-based designs. In principle, it is possible to infer population structure from associations between marker loci and from associations of markers with the trait, even when no information about the demographic background of the population is available. In a model in which the total population is formed by admixture between two or more subpopulations, confounding can be estimated and controlled. Current implementations of this approach have limitations, the most serious of which is that they do not allow for uncertainty in estimations of individual admixture proportions or for lack of identifiability of subpopulations in the model. We describe methods that overcome these limitations by a combination of Bayesian and classical approaches, and we demonstrate the methods by using data from three admixed populations--African American, African Caribbean, and Hispanic American--in which there is extreme confounding of trait-genotype associations because the trait under study (skin pigmentation) varies with admixture proportions. In these data sets, as many as one-third of marker loci show crude associations with the trait. Control for confounding by population stratification eliminates these associations, except at loci that are linked to candidate genes for the trait. With only 32 markers informative for ancestry, the efficiency of the analysis is 70%. These methods can deal with both confounding and selection bias in genetic-association studies, making family-based designs unnecessary.
Human Genetics | 2003
Mark D. Shriver; Esteban J. Parra; Sonia Dios; Carolina Bonilla; Heather L. Norton; Celina Jovel; Carrie Pfaff; Cecily Jones; Aisha Massac; Neil Cameron; Archie Baron; Tabitha Jackson; George Argyropoulos; Li Jin; Clive J. Hoggart; Paul McKeigue; Rick A. Kittles
Ancestry informative markers (AIMs) are genetic loci showing alleles with large frequency differences between populations. AIMs can be used to estimate biogeographical ancestry at the level of the population, subgroup (e.g. cases and controls) and individual. Ancestry estimates at both the subgroup and individual level can be directly instructive regarding the genetics of the phenotypes that differ qualitatively or in frequency between populations. These estimates can provide a compelling foundation for the use of admixture mapping (AM) methods to identify the genes underlying these traits. We present details of a panel of 34 AIMs and demonstrate how such studies can proceed, by using skin pigmentation as a model phenotype. We have genotyped these markers in two population samples with primarily African ancestry, viz. African Americans from Washington D.C. and an African Caribbean sample from Britain, and in a sample of European Americans from Pennsylvania. In the two African population samples, we observed significant correlations between estimates of individual ancestry and skin pigmentation as measured by reflectometry (R2=0.21, P<0.0001 for the African-American sample and R2=0.16, P<0.0001 for the British African-Caribbean sample). These correlations confirm the validity of the ancestry estimates and also indicate the high level of population structure related to admixture, a level that characterizes these populations and that is detectable by using other tests to identify genetic structure. We have also applied two methods of admixture mapping to test for the effects of three candidate genes (TYR, OCA2, MC1R) on pigmentation. We show that TYR and OCA2 have measurable effects on skin pigmentation differences between the west African and west European parental populations. This work indicates that it is possible to estimate the individual ancestry of a person based on DNA analysis with a reasonable number of well-defined genetic markers. The implications and applications of ancestry estimates in biomedical research are discussed.
American Journal of Human Genetics | 2001
Carrie Pfaff; Esteban J. Parra; Carolina Bonilla; K. Hiester; Paul McKeigue; M. I. Kamboh; R. G. Hutchinson; Robert E. Ferrell; Eric Boerwinkle; Mark D. Shriver
Gene flow between genetically distinct populations creates linkage disequilibrium (admixture linkage disequilibrium [ALD]) among all loci (linked and unlinked) that have different allele frequencies in the founding populations. We have explored the distribution of ALD by using computer simulation of two extreme models of admixture: the hybrid-isolation (HI) model, in which admixture occurs in a single generation, and the continuous-gene-flow (CGF) model, in which admixture occurs at a steady rate in every generation. Linkage disequilibrium patterns in African American population samples from Jackson, MS, and from coastal South Carolina resemble patterns observed in the simulated CGF populations, in two respects. First, significant association between two loci (FY and AT3) separated by 22 cM was detected in both samples. The retention of ALD over relatively large (>10 cM) chromosomal segments is characteristic of a CGF pattern of admixture but not of an HI pattern. Second, significant associations were also detected between many pairs of unlinked loci, as observed in the CGF simulation results but not in the simulated HI populations. Such a high rate of association between unlinked markers in these populations could result in false-positive linkage signals in an admixture-mapping study. However, we demonstrate that by conditioning on parental admixture, we can distinguish between true linkage and association resulting from shared ancestry. Therefore, populations with a CGF history of admixture not only are appropriate for admixture mapping but also have greater power for detection of linkage disequilibrium over large chromosomal regions than do populations that have experienced a pattern of admixture more similar to the HI model, if methods are employed that detect and adjust for disequilibrium caused by continuous admixture.
Annals of Human Genetics | 2004
Carolina Bonilla; Esteban J. Parra; C. L. Pfaff; Sonia Dios; Julie A. Marshall; Richard F. Hamman; Robert E. Ferrell; C. L. Hoggart; Paul McKeigue; Mark D. Shriver
Hispanic populations are a valuable resource that can and should facilitate the identification of complex trait genes by means of admixture mapping (AM). In this paper we focus on a particular Hispanic population living in the San Luis Valley (SLV) in Southern Colorado.We used a set of 22 Ancestry Informative Markers (AIMs) to describe the admixture process and dynamics in this population. AIMs are defined as genetic markers that exhibit allele frequency differences between parental populations ≥30%, and are more informative for studying admixed populations than random markers. The ancestral proportions of the SLV Hispanic population are estimated as 62.7 ± 2.1% European, 34.1 ± 1.9% Native American and 3.2 ± 1.5% West African. We also estimated the ancestral proportions of individuals using these AIMs. Population structure was demonstrated by the excess association of unlinked markers, the correlation between estimates of admixture based on unlinked marker sets, and by a highly significant correlation between individual Native American ancestry and skin pigmentation (R2= 0.082, p < 0.001). We discuss the implications of these findings in disease gene mapping efforts.
Human Genetics | 2004
Carolina Bonilla; Mark D. Shriver; Esteban J. Parra; Alfredo Jones; Jose R. Fernandez
Hispanic and African American populations exhibit an increased risk of obesity compared with populations of European origin, a feature that may be related to inherited risk alleles from Native American and West African parental populations. However, a relationship between West African ancestry and obesity-related traits, such as body mass index (BMI), fat mass (FM), and fat-free mass (FFM), and with bone mineral density (BMD) in African American women has only recently been reported. In order to evaluate further the influence of ancestry on body composition phenotypes, we studied a Hispanic population with substantial European, West African, and Native American admixture. We ascertained a sample of Puerto Rican women living in New York (n=64), for whom we measured BMI and body composition variables, such as FM, FFM, percent body fat, and BMD. Additionally, skin pigmentation was measured as the melanin index by reflectance spectroscopy. We genotyped 35 autosomal ancestry informative markers and estimated population and individual ancestral proportions in terms of European, West African, and Native American contributions to this population. The ancestry proportions corresponding to the three parental populations are: 53.3±2.8% European, 29.1±2.3% West African, and 17.6±2.4% Native American. We detected significant genetic structure in this population with a number of different tests. A highly significant correlation was found between skin pigmentation and individual ancestry (R2=0.597, P<0.001) that was not attributable to differences in socioeconomic status. A significant association was also found between BMD and European admixture (R2=0.065, P=0.042), but no such correlation was evident with BMI or the remaining body composition measurements. We discuss the implications of our findings for the potential use of this Hispanic population for admixture mapping.
Human Genetics | 2005
Carolina Bonilla; Lesley Anne Boxill; Stacey Ann Mc Donald; Tyisha Williams; Nadeje Sylvester; Esteban J. Parra; Sonia Dios; Heather L. Norton; Mark D. Shriver; Rick A. Kittles
Skin color, a predictor of social interactions and risk factor for several types of cancer, is due to two contrasting forms of melanin, the darker eumelanin and lighter phaeomelanin. The lighter pigment phaeomelanin is the product of the antagonistic function of the agouti signaling protein (ASIP) on the α-melanocyte stimulating hormone receptor (MC1R). Studies have shown that a single-nucleotide polymorphism (SNP) in the 3′UTR of the ASIP gene is associated with dark hair and eyes; however, little is known about its role in inter-individual variation in skin color. Here we examine the relationship between the ASIP g.8818A>G SNP and skin color (M index) as assessed by reflectometry in 234 African Americans. Analyses of variance (ANOVA) were performed to evaluate the effects of ASIP genotypes, age, individual ancestry, and sex on skin color variation. Significant effects on M index variation were observed for ASIP genotypes (F(2,236)=4.37, P=0.01), ancestry (F(1,243)=37.2, P<0.001), and sex (F(1,244)=4.08, P=0.05). Subsequent analyses revealed a strong effect on M index from ASIP genotypes in African American females (P<0.001). Our study suggests that the ASIP G>A polymorphism exhibits a dominant effect leading to lighter skin color and that variation in the ASIP gene may have been one of several factors contributing to reductions in pigmentation in some populations. Further study is needed to reveal how interactions between ASIP and several other genes, such as MC1R and P, predict human pigmentation.
Annals of Human Genetics | 2007
J. Benn-Torres; Carolina Bonilla; Christiane M. Robbins; L. Waterman; T. Y. Moses; Wenndy Hernandez; Eunice R. Santos; Franklyn I Bennett; William Aiken; T. Tullock; Kathleen C. M Coard; Anselm Hennis; Suh-Yuh Wu; Barbara Nemesure; M.C. Leske; Vincent L. Freeman; John D. Carpten; Rick A. Kittles
Throughout biomedical research, there is growing interest in the use of ancestry informative markers (AIMs) to deconstruct racial categories into useful variables. Studies on recently admixed populations have shown significant population substructure due to differences in individual ancestry; however, few studies have examined Caribbean populations. Here we used a panel of 28 AIMs to examine the genetic ancestry of 298 individuals of African descent from the Caribbean islands of Jamaica, St. Thomas and Barbados. Differences in global admixture were observed, with Barbados having the highest level of West African ancestry (89.6%± 2.0) and the lowest levels of European (10.2%± 2.2) and Native American ancestry (0.2%± 2.0), while Jamaica possessed the highest levels of European (12.4%± 3.5) and Native American ancestry (3.2%± 3.1). St. Thomas, USVI had ancestry levels quite similar to African Americans in continental U.S. (86.8%± 2.2 West African, 10.6%± 2.3 European, and 2.6%± 2.1 Native American). Significant substructure was observed in the islands of Jamaica and St. Thomas but not Barbados (K=1), indicating that differences in population substructure exist across these three Caribbean islands. These differences likely stem from diverse colonial and historical experiences, and subsequent evolutionary processes. Most importantly, these differences may have significant ramifications for case‐control studies of complex disease in Caribbean populations.
Journal of Medical Genetics | 2004
Esteban J. Parra; Clive J. Hoggart; Carolina Bonilla; Sonia Dios; Jill M. Norris; Julie A. Marshall; Richard F. Hamman; Robert E. Ferrell; Paul McKeigue; Mark D. Shriver
The prevalence of type 2 diabetes is higher in populations of Native American ancestry, and in Hispanic American populations formed by admixture between Europeans and Native Americans, than in populations of European ancestry.1 One approach to distinguishing between environmental and genetic explanations for this difference is to study the relationship of type 2 diabetes risk to individual admixture proportions (the proportions of an individual’s genome that are of European and Native American ancestry). With only a few markers informative for ancestry, it is possible to estimate the average admixture proportions of any Hispanic American population. In such analyses, it has been possible to demonstrate that the prevalence of type 2 diabetes in Hispanic Americans in the south western United States varies with the average Native American admixture proportion of these populations.2–4 In the Native American population of Gila River, Arizona, USA, European admixture is associated with lower prevalence of type 2 diabetes.5 However, it has not been possible to demonstrate an association of type 2 diabetes with individual admixture proportions within an Hispanic American population. To estimate the admixture proportions of an individual accurately requires a larger panel of markers: at least 40 markers with average frequency differentials of 0.6 are required to estimate the admixture of an individual with a standard error of no more than 0.1.6 It is now possible to identify relatively large numbers of such ancestry informative markers from data accumulating in the public domain. For this study we typed a panel of 21 markers chosen to have large differences in frequency between European, Native American, and West African ancestry. The possible relationship of type 2 diabetes risk to individual admixture proportions within Hispanic American populations complicates the interpretation of associations of type 2 diabetes with candidate gene polymorphisms within these …
International Journal of Obesity | 2006
Carolina Bonilla; Ramesh K. Panguluri; LaTonia Taliaferro-Smith; G Argyropoulos; Guanjie Chen; Adebowale Adeyemo; Albert Amoah; Samuel Owusu; Joseph Acheampong; Kofi Agyenim-Boateng; Benjamin A. Eghan; Johnnie Oli; Godfrey Okafor; Fayeofori Abbiyesuku; Thomas Johnson; Theresa Rufus; Olufemi Fasanmade; Yuanxiu Chen; Francis S. Collins; Georgia M. Dunston; Charles N. Rotimi; Rick A. Kittles
Objective:The role of the central melanocortin system in the development of obesity has been extensively studied. Single-nucleotide polymorphisms (SNPs) within several candidate genes have been associated with food intake and obesity-related phenotypes; however, few of these associations have been replicated. SNPs in the agouti-related protein (AGRP) gene coding (Ala67Thr, 199G/A) and promoter (−38C/T) have been reported to be associated with body mass index (BMI), fat mass (FM) and percent body fat, in populations of European and African descent. In this study, we evaluated the association between the functional AGRP −38C/T promoter SNP and weight-related traits, namely BMI, FM and fat-free mass (FFM), as well as diabetes status.Design:An association study of the AGRP −38C/T SNP and indices of obesity and diabetes status.Subjects:A well-characterized population of 538 West Africans from Ghana and Nigeria recruited in the AADM (Africa America Diabetes Mellitus) study (mean age 52 years, 41.3% males, 71% diabetic).Measurements:Genotyping of the AGRP −38C/T SNP, BMI, FM, FFM and fasting plasma glucose.Results:Women carrying two copies of the variant T allele had significantly lower BMI (OR=0.47; 95% CI, 0.25–0.87). Also, men with at least one copy of the variant T allele were over two times less likely to be diabetic than other men (OR=0.44; 95% CI, 0.22–0.89).Conclusion:Our results replicate previous findings and implicate the AGRP −38C/T SNP in the regulation of body weight in West Africans.