Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolina Chavarro is active.

Publication


Featured researches published by Carolina Chavarro.


Nature Genetics | 2014

A reference genome for common bean and genome-wide analysis of dual domestications

Jeremy Schmutz; Phillip E. McClean; Sujan Mamidi; G Albert Wu; Steven B. Cannon; Jane Grimwood; Jerry Jenkins; Shengqiang Shu; Qijian Song; Carolina Chavarro; Mirayda Torres-Torres; Valérie Geffroy; Samira Mafi Moghaddam; Dongying Gao; Brian Abernathy; Kerrie Barry; Matthew W. Blair; Mark A. Brick; Mansi Chovatia; Paul Gepts; David Goodstein; Michael Gonzales; Uffe Hellsten; David L. Hyten; Gaofeng Jia; James D. Kelly; Dave Kudrna; Rian Lee; Manon M. S. Richard; Phillip N. Miklas

Common bean (Phaseolus vulgaris L.) is the most important grain legume for human consumption and has a role in sustainable agriculture owing to its ability to fix atmospheric nitrogen. We assembled 473 Mb of the 587-Mb genome and genetically anchored 98% of this sequence in 11 chromosome-scale pseudomolecules. We compared the genome for the common bean against the soybean genome to find changes in soybean resulting from polyploidy. Using resequencing of 60 wild individuals and 100 landraces from the genetically differentiated Mesoamerican and Andean gene pools, we confirmed 2 independent domestications from genetic pools that diverged before human colonization. Less than 10% of the 74 Mb of sequence putatively involved in domestication was shared by the two domestication events. We identified a set of genes linked with increased leaf and seed size and combined these results with quantitative trait locus data from Mesoamerican cultivars. Genes affected by domestication may be useful for genomics-enabled crop improvement.


BMC Plant Biology | 2011

Gene-based SSR markers for common bean (Phaseolus vulgaris L.) derived from root and leaf tissue ESTs: an integration of the BMc series

Matthew W. Blair; Natalia Hurtado; Carolina Chavarro; Monica Munoz-Torres; Martha C. Giraldo; Fabio Pedraza; Jeff Tomkins; Rod A. Wing

BackgroundSequencing of cDNA libraries for the development of expressed sequence tags (ESTs) as well as for the discovery of simple sequence repeats (SSRs) has been a common method of developing microsatellites or SSR-based markers. In this research, our objective was to further sequence and develop common bean microsatellites from leaf and root cDNA libraries derived from the Andean gene pool accession G19833 and the Mesoamerican gene pool accession DOR364, mapping parents of a commonly used reference map. The root libraries were made from high and low phosphorus treated plants.ResultsA total of 3,123 EST sequences from leaf and root cDNA libraries were screened and used for direct simple sequence repeat discovery. From these EST sequences we found 184 microsatellites; the majority containing tri-nucleotide motifs, many of which were GC rich (ACC, AGC and AGG in particular). Di-nucleotide motif microsatellites were about half as common as the tri-nucleotide motif microsatellites but most of these were AGn microsatellites with a moderate number of ATn microsatellites in root ESTs followed by few ACn and no GCn microsatellites. Out of the 184 new SSR loci, 120 new microsatellite markers were developed in the BMc (Bean Microsatellites from cDNAs) series and these were evaluated for their capacity to distinguish bean diversity in a germplasm panel of 18 genotypes. We developed a database with images of the microsatellites and their polymorphism information content (PIC), which averaged 0.310 for polymorphic markers.ConclusionsThe present study produced information about microsatellite frequency in root and leaf tissues of two important genotypes for common bean genomics: namely G19833, the Andean genotype selected for whole genome shotgun sequencing from race Peru, and DOR364 a race Mesoamerica subgroup 2 genotype that is a small-red seeded, released variety in Central America. Both race Peru and Mesoamerica subgroup 2 (small red beans) have been understudied in comparison to race Nueva Granada and Mesoamerica subgroup 1 (black beans) both with regards to gene expression and as sources of markers. However, we found few differences between SSR type and frequency between the G19833 leaf and DOR364 root tissue-derived ESTs. Overall, our work adds to the analysis of microsatellite frequency evaluation for common bean and provides a new set of 120 BMc markers which combined with the 248 previously developed BMc markers brings the total in this series to 368 markers. Once we include BMd markers, which are derived from GenBank sequences, the current total of gene-based markers from our laboratory surpasses 500 markers. These markers are basic for studies of the transcriptome of common bean and can form anchor points for genetic mapping studies in the future.


BMC Genomics | 2010

Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers

Juana Marcela Córdoba; Carolina Chavarro; Jessica A. Schlueter; Scott A. Jackson; Matthew W. Blair

BackgroundCommon bean (Phaseolus vulgaris L.) is the most important legume for direct human consumption and the goal of this study was to integrate a recently constructed physical map for the species with a microsatellite based genetic map using a BAC library from the genotype G19833 and the recombinant inbred line population DOR364 × G19833.ResultsWe searched for simple sequence repeats (SSRs) in the 89,017 BAC-end sequences (BES) from the physical map and genetically mapped any polymorphic BES-SSRs onto the genetic map. Among the BES it was possible to identify 623 contig-linked SSRs, most of which were highly AT-rich. A subgroup of 230 di-nucleotide and tri-nucleotide based SSR primer pairs from these BACs was tested on the mapping parents with 176 single copy loci and 114 found to be polymorphic markers. Of these, 99 were successfully integrated into the genetic map. The 99 linkages between the genetic and physical maps corresponded to an equal number of contigs containing a total of 5,055 BAC clones.ConclusionsClass II microsatellites were more common in the BES than longer class I microsatellites. Both types of markers proved to be valuable for linking BAC clones to the genetic map and were successfully placed across all 11 linkage groups. The integration of common bean physical and genetic maps is an important part of comparative genome analysis and a prelude to positional cloning of agronomically important genes for this crop.


Plant Physiology | 2015

A comparative epigenomic analysis of polyploidy-derived genes in soybean and common bean

Kyung Do Kim; Moaine El Baidouri; Brian Abernathy; Aiko Iwata-Otsubo; Carolina Chavarro; Michael Gonzales; Marc Libault; Jane Grimwood; Scott A. Jackson

Reference methylomes provide insights into the evolutionary role of DNA methylation in paleopolyploid genomes. Soybean (Glycine max) and common bean (Phaseolus vulgaris) share a paleopolyploidy (whole-genome duplication [WGD]) event, approximately 56.5 million years ago, followed by a genus Glycine-specific polyploidy, approximately 10 million years ago. Cytosine methylation is an epigenetic mark that plays an important role in the regulation of genes and transposable elements (TEs); however, the role of DNA methylation in the fate/evolution of genes following polyploidy and speciation has not been fully explored. Whole-genome bisulfite sequencing was used to produce nucleotide resolution methylomes for soybean and common bean. We found that, in soybean, CG body-methylated genes were abundant in WGD genes, which were, on average, more highly expressed than single-copy genes and had slower evolutionary rates than unmethylated genes, suggesting that WGD genes evolve more slowly than single-copy genes. CG body-methylated genes were also enriched in shared single-copy genes (single copy in both species) that may be responsible for the broad and high expression patterns of this class of genes. In addition, diverged methylation patterns in non-CG contexts between paralogs were due mostly to TEs in or near genes, suggesting a role for TEs and non-CG methylation in regulating gene expression post polyploidy. Reference methylomes for both soybean and common bean were constructed, providing resources for investigating epigenetic variation in legume crops. Also, the analysis of methylation patterns of duplicated and single-copy genes has provided insights into the functional consequences of polyploidy and epigenetic regulation in plant genomes.


Scientific Reports | 2017

Development and Evaluation of a High Density Genotyping 'Axiom_Arachis' Array with 58 K SNPs for Accelerating Genetics and Breeding in Groundnut.

Manish K. Pandey; Gaurav Agarwal; Sandip M. Kale; Josh Clevenger; Spurthi N. Nayak; Manda Sriswathi; Annapurna Chitikineni; Carolina Chavarro; Xiaoping Chen; Hari D. Upadhyaya; Manish K. Vishwakarma; Soraya C. M. Leal-Bertioli; Xuanqiang Liang; David J. Bertioli; Baozhu Guo; Scott A. Jackson; Peggy Ozias-Akins; Rajeev K. Varshney

Single nucleotide polymorphisms (SNPs) are the most abundant DNA sequence variation in the genomes which can be used to associate genotypic variation to the phenotype. Therefore, availability of a high-density SNP array with uniform genome coverage can advance genetic studies and breeding applications. Here we report the development of a high-density SNP array ‘Axiom_Arachis’ with 58 K SNPs and its utility in groundnut genetic diversity study. In this context, from a total of 163,782 SNPs derived from DNA resequencing and RNA-sequencing of 41 groundnut accessions and wild diploid ancestors, a total of 58,233 unique and informative SNPs were selected for developing the array. In addition to cultivated groundnuts (Arachis hypogaea), fair representation was kept for other diploids (A. duranensis, A. stenosperma, A. cardenasii, A. magna and A. batizocoi). Genotyping of the groundnut ‘Reference Set’ containing 300 genotypes identified 44,424 polymorphic SNPs and genetic diversity analysis provided in-depth insights into the genetic architecture of this material. The availability of the high-density SNP array ‘Axiom_Arachis’ with 58 K SNPs will accelerate the process of high resolution trait genetics and molecular breeding in cultivated groundnut.


Genetics | 2015

Tetrasomic Recombination Is Surprisingly Frequent in Allotetraploid Arachis

Soraya C. M. Leal-Bertioli; Kenta Shirasawa; Brian Abernathy; Márcio C. Moretzsohn; Carolina Chavarro; Josh Clevenger; Peggy Ozias-Akins; Scott A. Jackson; David J. Bertioli

Arachis hypogaea L. (cultivated peanut) is an allotetraploid (2n = 4x = 40) with an AABB genome type. Based on cytogenetic studies it has been assumed that peanut and wild-derived induced AABB allotetraploids have classic allotetraploid genetic behavior with diploid-like disomic recombination only between homologous chromosomes, at the exclusion of recombination between homeologous chromosomes. Using this assumption, numerous linkage map and quantitative trait loci studies have been carried out. Here, with a systematic analysis of genotyping and gene expression data, we show that this assumption is not entirely valid. In fact, autotetraploid-like tetrasomic recombination is surprisingly frequent in recombinant inbred lines generated from a cross of cultivated peanut and an induced allotetraploid derived from peanut’s most probable ancestral species. We suggest that a better, more predictive genetic model for peanut is that of a “segmental allotetraploid” with partly disomic, partly tetrasomic genetic behavior. This intermediate genetic behavior has probably had a previously overseen, but significant, impact on the genome and genetics of cultivated peanut.


Frontiers in Bioengineering and Biotechnology | 2015

Genome-Wide Identification of Evolutionarily Conserved Alternative Splicing Events in Flowering Plants

Srikar Chamala; Guanqiao Feng; Carolina Chavarro; W. Brad Barbazuk

Alternative splicing (AS) plays important roles in many plant functions, but its conservation across the plant kingdom is not known. We describe a methodology to identify AS events and identify conserved AS events across large phylogenetic distances using RNA-Seq datasets. We applied this methodology to transcriptome data from nine angiosperms including Amborella, the single sister species to all other extant flowering plants. AS events within 40–70% of the expressed multi-exonic genes per species were found, 27,120 of which are conserved among two or more of the taxa studied. While many events are species specific, many others are shared across long evolutionary distances suggesting they have functional significance. Conservation of AS event data provides an estimate of the number of ancestral AS events present at each node of the tree representing the nine species studied. Furthermore, the presence or absence of AS isoforms between species with different whole genome duplication (WGD) histories provides the opportunity to examine the impact of WDG on AS potential. Examining AS in gene families identifies those with high rates of AS, and conservation can distinguish ancient events vs. recent or species specific adaptations. The MADS-box and SR protein families are found to represent families with low and high occurrences of AS, respectively, yet their AS events were likely present in the MRCA of angiosperms.


Theoretical and Applied Genetics | 2012

Nucleotide diversity patterns at the drought-related DREB2 encoding genes in wild and cultivated common bean (Phaseolus vulgaris L.)

Andrés J. Cortés; D. This; Carolina Chavarro; Santiago Madriñán; Matthew W. Blair

Common beans are an important food legume faced with a series of abiotic stresses the most severe of which is drought. The crop is interesting as a model for the analysis of gene phylogenies due to its domestication process, race structure, and origins in a group of wild common beans found along the South American Andes and the region of Mesoamerica. Meanwhile, the DREB2 transcription factors have been implicated in controlling non-ABA dependent responses to drought stress. With this in mind our objective was to study in depth the genetic diversity for two DREB2 genes as possible candidates for association with drought tolerance through a gene phylogenetic analysis. In this genetic diversity assessment, we analyzed nucleotide diversity at the two candidate genes Dreb2A and Dreb2B, in partial core collections of 104 wild and 297 cultivated common beans with a total of 401 common bean genotypes from world-wide germplasm analyzed. Our wild population sample covered a range of semi-mesic to very dry habitats, while our cultivated samples presented a wide spectrum of low to high drought tolerance. Both genes showed very different patterns of nucleotide variation. Dreb2B exhibited very low nucleotide diversity relative to neutral reference loci previously surveyed in these populations. This suggests that strong purifying selection has been acting on this gene. In contrast, Dreb2A exhibited higher levels of nucleotide diversity, which is indicative of adaptive selection and population expansion. These patterns were more distinct in wild compared to cultivated common beans. These approximations suggested the importance of Dreb2 genes in the context of drought tolerance, and constitute the first steps towards an association study between genetic polymorphism of this gene family and variation in drought tolerance traits. We discuss the utility of allele mining in the DREB gene family for the discovery of new drought tolerance traits from wild common bean.


Molecular Plant | 2017

Genome-wide SNP Genotyping Resolves Signatures of Selection and Tetrasomic Recombination in Peanut

Josh Clevenger; Ye Chu; Carolina Chavarro; Gaurav Agarwal; David J. Bertioli; Soraya C. M. Leal-Bertioli; Manish K. Pandey; Justin N. Vaughn; Brian Abernathy; Noelle A. Barkley; Ran Hovav; Mark D. Burow; Spurthi N. Nayak; Annapurna Chitikineni; T. G. Isleib; C. Corley Holbrook; Scott A. Jackson; Rajeev K. Varshney; Peggy Ozias-Akins

Peanut (Arachis hypogaea; 2n = 4x = 40) is a nutritious food and a good source of vitamins, minerals, and healthy fats. Expansion of genetic and genomic resources for genetic enhancement of cultivated peanut has gained momentum from the sequenced genomes of the diploid ancestors of cultivated peanut. To facilitate high-throughput genotyping of Arachis species, 20 genotypes were re-sequenced and genome-wide single nucleotide polymorphisms (SNPs) were selected to develop a large-scale SNP genotyping array. For flexibility in genotyping applications, SNPs polymorphic between tetraploid and diploid species were included for use in cultivated and interspecific populations. A set of 384 accessions was used to test the array resulting in 54 564 markers that produced high-quality polymorphic clusters between diploid species, 47 116 polymorphic markers between cultivated and interspecific hybrids, and 15 897 polymorphic markers within A. hypogaea germplasm. An additional 1193 markers were identified that illuminated genomic regions exhibiting tetrasomic recombination. Furthermore, a set of elite cultivars that make up the pedigree of US runner germplasm were genotyped and used to identify genomic regions that have undergone positive selection. These observations provide key insights on the inclusion of new genetic diversity in cultivated peanut and will inform the development of high-resolution mapping populations. Due to its efficiency, scope, and flexibility, the newly developed SNP array will be very useful for further genetic and breeding applications in Arachis.


BMC Plant Biology | 2015

Transcriptomic changes due to water deficit define a general soybean response and accession-specific pathways for drought avoidance

Jin Hee Shin; Justin N. Vaughn; Hussein Abdel-Haleem; Carolina Chavarro; Brian Abernathy; Kyung Do Kim; Scott A. Jackson; Zenglu Li

BackgroundAmong abiotic stresses, drought is the most common reducer of crop yields. The slow-wilting soybean genotype PI 416937 is somewhat robust to water deficit and has been used previously to map the trait in a bi-parental population. Since drought stress response is a complex biological process, whole genome transcriptome analysis was performed to obtain a deeper understanding of the drought response in soybean.ResultsContrasting data from PI 416937 and the cultivar ‘Benning’, we developed a classification system to identify genes that were either responding to water-deficit in both genotypes or that had a genotype x environment (GxE) response. In spite of very different wilting phenotypes, 90% of classifiable genes had either constant expression in both genotypes (33%) or very similar response profiles (E genes, 57%). By further classifying E genes based on expression profiles, we were able to discern the functional specificity of transcriptional responses at particular stages of water-deficit, noting both the well-known reduction in photosynthesis genes as well as the less understood up-regulation of the protein transport pathway. Two percent of classifiable genes had a well-defined GxE response, many of which are located within slow-wilting QTLs. We consider these strong candidates for possible causal genes underlying PI 416937’s unique drought avoidance strategy.ConclusionsThere is a general and functionally significant transcriptional response to water deficit that involves not only known pathways, such as down-regulation of photosynthesis, but also up-regulation of protein transport and chromatin remodeling. Genes that show a genotypic difference are more likely to show an environmental response than genes that are constant between genotypes. In this study, at least five genes that clearly exhibited a genotype x environment response fell within known QTL and are very good candidates for further research into slow-wilting.

Collaboration


Dive into the Carolina Chavarro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio Pedraza

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soraya C. M. Leal-Bertioli

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

C. Corley Holbrook

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge