Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolina Demarchi Munhoz is active.

Publication


Featured researches published by Carolina Demarchi Munhoz.


Neuron | 2009

The Stressed CNS: When Glucocorticoids Aggravate Inflammation

Shawn F. Sorrells; Javier R. Caso; Carolina Demarchi Munhoz; Robert M. Sapolsky

Glucocorticoids (GCs) are hormones released during the stress response that are well known for their immunosuppressive and anti-inflammatory properties; however, recent advances have uncovered situations wherein they have effects in the opposite direction. The CNS is a particularly interesting example, both because of its unique immune environment, and because GCs affect immune responses differently in different brain regions. In this minireview we discuss the contexts wherein GCs increase CNS inflammation and point out directions for future investigation.


The Journal of Neuroscience | 2006

Chronic Unpredictable Stress Exacerbates Lipopolysaccharide-Induced Activation of Nuclear Factor-κB in the Frontal Cortex and Hippocampus via Glucocorticoid Secretion

Carolina Demarchi Munhoz; Lucilia B. Lepsch; Elisa Mitiko Kawamoto; Marília Brinati Malta; Larissa de Sá Lima; Maria Christina W. Avellar; Robert M. Sapolsky; Cristoforo Scavone

Although the anti-inflammatory actions of glucocorticoids (GCs) are well established in the periphery, these stress hormones can increase inflammation under some circumstances in the brain. The transcription factor nuclear factor-κB (NF-κB), which is inhibited by GCs, regulates numerous genes central to inflammation. In this study, the effects of stress, GCs, and NMDA receptors on lipopolysaccharide (LPS)-induced activation of NF-κB in the brain were investigated. One day after chronic unpredictable stress (CUS), nonstressed and CUS rats were treated with saline or LPS and killed 2 h later. CUS potentiated the increase in LPS-induced activation of NF-κB in frontal cortex and hippocampus but not in the hypothalamus. This stress effect was blocked by pretreatment of rats with RU-486, an antagonist of the GC receptor. MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate], an NMDA receptor antagonist, also reduced the effect of LPS in all three brain regions. However, the combined antagonism of both GC and NMDA receptors produced no further reduction in NF-κB activation when compared with the effect of each treatment alone. Our results indicate that stress, via GC secretion, can increase LPS-induced NF-κB activation in the frontal cortex and hippocampus, agreeing with a growing literature demonstrating proinflammatory effects of GCs.


Brazilian Journal of Medical and Biological Research | 2008

Stress-induced neuroinflammation: mechanisms and new pharmacological targets

Carolina Demarchi Munhoz; Borja García-Bueno; José L. M. Madrigal; Lucilia B. Lepsch; Cristoforo Scavone; Juan C. Leza

Stress is triggered by numerous unexpected environmental, social or pathological stimuli occurring during the life of animals, including humans, which determine changes in all of their systems. Although acute stress is essential for survival, chronic, long-lasting stress can be detrimental. In this review, we present data supporting the hypothesis that stress-related events are characterized by modifications of oxidative/nitrosative pathways in the brain in response to the activation of inflammatory mediators. Recent findings indicate a key role for nitric oxide (NO) and an excess of pro-oxidants in various brain areas as responsible for both neuronal functional impairment and structural damage. Similarly, cyclooxygenase-2 (COX-2), another known source of oxidants, may account for stress-induced brain damage. Interestingly, some of the COX-2-derived mediators, such as the prostaglandin 15d-PGJ2 and its peroxisome proliferator-activated nuclear receptor PPARgamma, are activated in the brain in response to stress, constituting a possible endogenous anti-inflammatory mechanism of defense against excessive inflammation. The stress-induced activation of both biochemical pathways depends on the activation of the N-methyl-D-aspartate (NMDA) glutamate receptor and on the activation of the transcription factor nuclear factor kappa B (NFkappaB). In the case of inducible NO synthase (iNOS), release of the cytokine TNF-alpha also accounts for its expression. Different pharmacological strategies directed towards different sites in iNOS or COX-2 pathways have been shown to be neuroprotective in stress-induced brain damage: NMDA receptor blockers, inhibitors of TNF-alpha activation and release, inhibitors of NFkappaB, specific inhibitors of iNOS and COX-2 activities and PPARgamma agonists. This article reviews recent contributions to this area addressing possible new pharmacological targets for the treatment of stress-induced neuropsychiatric disorders.


The Journal of Neuroscience | 2010

Glucocorticoids Exacerbate Lipopolysaccharide-Induced Signaling in the Frontal Cortex and Hippocampus in a Dose-Dependent Manner

Carolina Demarchi Munhoz; Shawn F. Sorrells; Javier R. Caso; Cristoforo Scavone; Robert M. Sapolsky

Although the anti-inflammatory actions of glucocorticoids (GCs) are well established, evidence has accumulated showing that proinflammatory GC effects can occur in the brain, in a poorly understood manner. Using electrophoretic mobility shift assay, real-time PCR, and immunoblotting, we investigated the ability of varying concentrations of corticosterone (CORT, the GC of rats) to modulate lipopolysaccharide (LPS)-induced activation of NF-κB (nuclear factor κB), expression of anti- and proinflammatory factors and of the MAP (mitogen-activated protein) kinase family [ERK (extracellular signal-regulated kinase), p38, and JNK/SAPK (c-Jun N-terminal protein kinase/stress-activated protein kinase)], and AKT. In the frontal cortex, elevated CORT levels were proinflammatory, exacerbating LPS effects on NF-κB, MAP kinases, and proinflammatory gene expression. Milder proinflammatory GCs effects occurred in the hippocampus. In the absence of LPS, elevated CORT levels increased basal activation of ERK1/2, p38, SAPK/JNK, and AKT in both regions. These findings suggest that GCs do not uniformly suppress neuroinflammation and can even enhance it at multiple levels in the pathway linking LPS exposure to inflammation.


Neurobiology of Aging | 2005

Oxidative state in platelets and erythrocytes in aging and Alzheimer's disease

Elisa Mitiko Kawamoto; Carolina Demarchi Munhoz; Isaias Glezer; Valéria Santoro Bahia; Paulo Caramelli; Ricardo Nitrini; Renata Gorjão; Rui Curi; Cristoforo Scavone; Tania Marcourakis

Several studies have shown involvement of peroxynitrite anion, a potent oxidative agent, in Alzheimers disease (AD) neuropathology. Herein, we assessed in platelets and erythrocytes of AD patients, age-matched and young adults controls: thiobarbituric acid-reactive substances (TBARS) production; superoxide dismutase (SOD), nitric oxide synthase (NOS) and Na,K-ATPase activities; cyclic GMP (cGMP) content, both basal and after sodium nitroprusside (SNP) stimulation. Aging was associated with an increase in TBARS production and NOS activity, a decrease in basal cGMP content and no change in SOD and Na,K-ATPase activities. AD patients, compared to aged controls, have: increase in TBARS production and in NOS, SOD and Na,K-ATPase activities but no alteration in basal cGMP content. SNP increased cGMP platelets production in all groups. In conclusion, we demonstrated in platelets and erythrocytes a disruption in systemic modulation of oxidative stress in aging and with more intensity in AD.


Neuropharmacology | 2003

MK-801 and 7-Ni attenuate the activation of brain NF-κB induced by LPS

Isaias Glezer; Carolina Demarchi Munhoz; Elisa Mitiko Kawamoto; Tania Marcourakis; Maria Christina W. Avellar; Cristoforo Scavone

The activation of nuclear factor-kappaB (NF-kappaB) leads to an increase in the expression of genes involved in important events in the central nervous system (CNS), such as development, plasticity and inflammation. It has been shown that inflammatory stimulus in the brain increases excitatory glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptor. These receptors have an important role in glutamate neurotoxicity and are in general coupled with the generation of nitric oxide (NO) through the activation of neuronal nitric oxide synthase (NOS). We have investigated the involvement of NMDA-NO pathway in LPS induction of NF-kappaB in CNS. Our results demonstrate that systemic LPS activates NF-kappaB in several regions of the CNS, which was partially reduced by the NMDA receptor antagonist dizolcipine (MK-801) and by the selective brain NOS inhibitor 7-Nitroindazol (7-Ni). 7-Ni effects were not synergic to MK-801 effects, suggesting that these compounds act through the same pathway. Dexamethasone caused a stronger reduction in LPS induction of NF-kappaB in CNS, demonstrating that MK-801 and 7-Ni act on a pathway that is responsible only by a fraction of the overall NF-kappaB activation. These results suggest that a considerable part of NF-kappaB activation by LPS is linked to the NMDA/NO pathway in CNS.


Molecular Brain | 2009

Cocaine induces cell death and activates the transcription nuclear factor kappa-B in PC12 cells.

Lucilia B. Lepsch; Carolina Demarchi Munhoz; Elisa Mitiko Kawamoto; Lidia M. Yshii; Larissa de Sá Lima; Maria F. Curi-Boaventura; Thais Martins de Lima Salgado; Rui Curi; Cleopatra da Silva Planeta; Cristoforo Scavone

Cocaine is a worldwide used drug and its abuse is associated with physical, psychiatric and social problems. The mechanism by which cocaine causes neurological damage is very complex and involves several neurotransmitter systems. For example, cocaine increases extracellular levels of dopamine and free radicals, and modulates several transcription factors. NF-κB is a transcription factor that regulates gene expression involved in cellular death. Our aim was to investigate the toxicity and modulation of NF-κB activity by cocaine in PC 12 cells. Treatment with cocaine (1 mM) for 24 hours induced DNA fragmentation, cellular membrane rupture and reduction of mitochondrial activity. A decrease in Bcl-2 protein and mRNA levels, and an increase in caspase 3 activity and cleavage were also observed. In addition, cocaine (after 6 hours treatment) activated the p50/p65 subunit of NF-κB complex and the pretreatment of the cells with SCH 23390, a D1 receptor antagonist, attenuated the NF-κB activation. Inhibition of NF-κB activity by using PDTC and Sodium Salicilate increased cell death caused by cocaine. These results suggest that cocaine induces cell death (apoptosis and necrosis) and activates NF-κB in PC12 cells. This activation occurs, at least partially, due to activation of D1 receptors and seems to have an anti-apoptotic effect on these cells.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Effects of isoproterenol treatment for 7 days on inflammatory mediators in the rat aorta

Ana P. Davel; Lívia Emy Fukuda; Larissa Lima de Sa; Carolina Demarchi Munhoz; Cristoforo Scavone; David Sanz-Rosa; Victoria Cachofeiro; Vicente Lahera; Luciana V. Rossoni

The aim of the present study was to evaluate the effect of overstimulation of beta-adrenoceptors on vascular inflammatory mediators. Wistar rats were treated with the beta-adrenoceptor agonist isoproterenol (0.3 mg.kg(-1).day(-1) sc) or vehicle (control) for 7 days. At the end of treatment, the right carotid artery was catheterized for arterial and left ventricular (LV) hemodynamic evaluation. Isoproterenol treatment increased LV weight but did not change hemodynamic parameters. Aortic mRNA and protein expression were quantified by real-time RT-PCR and Western blot analysis, respectively. Isoproterenol enhanced aortic mRNA and protein expression of IL-1beta (124% and 125%) and IL-6 (231% and 40%) compared with controls but did not change TNF-alpha expression. The nuclear-to-cytoplasmatic protein expression ration of the NF-kappaB p65 subunit was increased by isoproterenol treatment (51%); in addition, it reduced the cytoplasmatic expression of IkappaB-alpha (52%) in aortas. An electrophoretic mobility shift assay was performed using the aorta, and increased NF-kappaB DNA binding (31%) was observed in isoproterenol-treated rats compared with controls (P < 0.05). Isoproterenol treatment increased phenylephrine-induced contraction in aortic rigs (P < 0.05), which was significantly reduced by superoxide dismutase (150 U/ml) and sodium salicylate (5 mM). Cotreatment with thalidomide (150 mg.kg(-1).day(-1) for 7 days) also reduced hyperreactivity to phenylephrine induced by isoproterenol. In conclusion, overstimulation of beta-adrenoceptors increased proinflammatory cytokines and upregulated NF-kappaB in the rat aorta. Moreover, local oxidative stress and the proinflammatory state seem to play key roles in the altered vascular reactivity of the rat aorta induced by chronic beta-adrenergic stimulation.


The Journal of Neuroscience | 2006

Enhancing Cognition after Stress with Gene Therapy

Andrea Nicholas; Carolina Demarchi Munhoz; Deveroux Ferguson; Laura B. Campbell; Robert M. Sapolsky

Hippocampal function is essential for the acquisition, consolidation, and retrieval of spatial memory. High circulating levels of glucocorticoids (GCs), the adrenal steroid hormones secreted during stress, have been shown to impair both acquisition and retrieval and can either impair or enhance consolidation, depending on experimental conditions. In contrast, estrogen can enhance spatial memory performance and can block the deleterious effects of GCs on such performance. We therefore constructed a chimeric gene (“ER/GR”) containing the hormone-binding domain of the GC receptor and the DNA binding domain of the estrogen receptor; as a result, ER/GR transduces deleterious GC signals into beneficial estrogenic ones. We show here that acute immobilization stress, before acquisition and retrieval phases, increases latencies for male rats in a hidden platform version of the Morris water maze. This impairment is blocked by hippocampal expression of the ER/GR transgene. ER/GR expression also blocks decreases in platform crossings caused by acute stress, either after acquisition or before retrieval. Three days of stress before acquisition produces an estrogen-like enhancement of performance in ER/GR-treated rats. Moreover, ER/GR blocks the suppressive effects of GCs on expression of brain-derived neurotrophic factor (BDNF), a growth factor central to hippocampal-dependent cognition and plasticity, instead producing an estrogenic increase in BDNF expression. Thus, ER/GR expression enhances spatial memory performance and blocks the impairing effects of GCs on such performance.


Neurobiology of Aging | 2005

Age-related changes in cyclic GMP and PKG-stimulated cerebellar Na,K-ATPase activity

Cristoforo Scavone; Carolina Demarchi Munhoz; Elisa Mitiko Kawamoto; Isaias Glezer; Larissa de Sá Lima; Tania Marcourakis; Regina P. Markus

Energy deficiency and dysfunction of the Na,K-ATPase are common consequences of many pathological insults. Glutamate through cyclic GMP and cyclic GMP-dependent protein kinase (PKG) has been shown to stimulate alpha(2/3)-Na,K-ATPase activity in the central nervous system. Thus, a slight impairment of this pathway may amplify the disruption of ion homeostasis in the presence of a non-lethal insult. We investigate the effect of aging (4, 12 and 24 months) on the glutamate-cyclic GMP-PKG modulation of alpha1, alpha(2/3)-Na,K-ATPase activity in rat cerebellum and the stimulation of the glutamate-cyclic GMP-PKG pathway at different levels. Cyclic GMP levels and alpha(2/3)-Na,K-ATPase activity were progressively decreased from 4 and 24 month-old animals. However, PKG basal activity was reduced between 4 and 12 months, and no additional change was observed at 24 months. The ability of 8-Br-cyclic GMP to stimulate PKG activity was only reduced between 12 and 24 months. Moreover, glutamate or 8-Br-cyclic GMP promoted a smaller increase of alpha(2/3)-Na,K-ATPase activity at 24 months, when compared to 4 and 12 months. In spite of the age-related reduced basal levels of cyclic GMP, the production induced by CO or NO was not age-related. Finally, inhibition of PKG activation by KT5823 revealed a lower sensitivity of the enzyme at the older age. Taken together, these data show that basal age-related decline in sodium pump activity is a consequence of changes in different steps of the cyclic GMP-PKG pathway. On the other hand, age-related reduction in glutamate positive modulation of cerebellar alpha(2/3)-Na,K-ATPase is linked to a defective PKG signaling pathway.

Collaboration


Dive into the Carolina Demarchi Munhoz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isaias Glezer

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Curi

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Christina W. Avellar

Federal University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge