Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolina E. Pardo is active.

Publication


Featured researches published by Carolina E. Pardo.


Current protocols in molecular biology | 2010

Bisulfite sequencing of DNA.

Russell P. Darst; Carolina E. Pardo; Lingbao Ai; Kevin D. Brown; Michael P. Kladde

Exact positions of 5‐methylcytosine (m5C) on a single strand of DNA can be determined by bisulfite genomic sequencing (BGS). Treatment with bisulfite ion preferentially deaminates unmethylated cytosines, which are then converted to uracil upon desulfonation. Amplifying regions of interest from deaminated DNA and sequencing products cloned from amplicons permits determination of methylation at single‐nucleotide resolution along single DNA molecules, which is not possible with other methylation analysis techniques. This unit describes a BGS technique suitable for most DNA sources, including formaldehyde‐fixed tissue. Considerations for experimental design and common sources of error are discussed. Curr. Protoc. Mol. Biol. 91:7.9.1‐7.9.17.


Nucleic Acids Research | 2011

MethylViewer: computational analysis and editing for bisulfite sequencing and methyltransferase accessibility protocol for individual templates (MAPit) projects

Carolina E. Pardo; Ian M. Carr; Christopher J. Hoffman; Russell P. Darst; Alexander F. Markham; David T. Bonthron; Michael P. Kladde

Bisulfite sequencing is a widely-used technique for examining cytosine DNA methylation at nucleotide resolution along single DNA strands. Probing with cytosine DNA methyltransferases followed by bisulfite sequencing (MAPit) is an effective technique for mapping protein–DNA interactions. Here, MAPit methylation footprinting with M.CviPI, a GC methyltransferase we previously cloned and characterized, was used to probe hMLH1 chromatin in HCT116 and RKO colorectal cancer cells. Because M.CviPI-probed samples contain both CG and GC methylation, we developed a versatile, visually-intuitive program, called MethylViewer, for evaluating the bisulfite sequencing results. Uniquely, MethylViewer can simultaneously query cytosine methylation status in bisulfite-converted sequences at as many as four different user-defined motifs, e.g. CG, GC, etc., including motifs with degenerate bases. Data can also be exported for statistical analysis and as publication-quality images. Analysis of hMLH1 MAPit data with MethylViewer showed that endogenous CG methylation and accessible GC sites were both mapped on single molecules at high resolution. Disruption of positioned nucleosomes on single molecules of the PHO5 promoter was detected in budding yeast using M.CviPII, increasing the number of enzymes available for probing protein–DNA interactions. MethylViewer provides an integrated solution for primer design and rapid, accurate and detailed analysis of bisulfite sequencing or MAPit datasets from virtually any biological or biochemical system.


Cancer Research | 2014

TRIM29 Suppresses TWIST1 and Invasive Breast Cancer Behavior

Lingbao Ai; Wan Ju Kim; Merve Alpay; Ming Tang; Carolina E. Pardo; Shigetsugu Hatakeyama; W. Stratford May; Michael P. Kladde; Coy D. Heldermon; Erin M. Siegel; Kevin D. Brown

TRIM29 (ATDC) exhibits a contextual function in cancer, but seems to exert a tumor-suppressor role in breast cancer. Here, we show that TRIM29 is often silenced in primary breast tumors and cultured tumor cells as a result of aberrant gene hypermethylation. RNAi-mediated silencing of TRIM29 in breast tumor cells increased their motility, invasiveness, and proliferation in a manner associated with increased expression of mesenchymal markers (N-cadherin and vimentin), decreased expression of epithelial markers (E-cadherin and EpCAM), and increased expression and activity of the oncogenic transcription factor TWIST1, an important driver of the epithelial-mesenchymal transition (EMT). Functional investigations revealed an inverse relationship in the expression of TRIM29 and TWIST1, suggesting the existence of a negative regulatory feedback loop. In support of this relationship, we found that TWIST1 inhibited TRIM29 promoter activity through direct binding to a region containing a cluster of consensus E-box elements, arguing that TWIST1 transcriptionally represses TRIM29 expression. Analysis of a public breast cancer gene-expression database indicated that reduced TRIM29 expression was associated with reduced relapse-free survival, increased tumor size, grade, and metastatic characteristics. Taken together, our results suggest that TRIM29 acts as a tumor suppressor in breast cancer through its ability to inhibit TWIST1 and suppress EMT.


Nucleic Acids Research | 2013

Epigenetic diversity of Kaposi’s sarcoma–associated herpesvirus

Russell P. Darst; Irina Haecker; Carolina E. Pardo; Rolf Renne; Michael P. Kladde

Spontaneous lytic reactivation of Kaposi’s sarcoma–associated herpesvirus (KSHV) occurs at a low rate in latently infected cells in disease and culture. This suggests imperfect epigenetic maintenance of viral transcription programs, perhaps due to variability in chromatin structure at specific loci across the population of KSHV episomal genomes. To characterize this locus-specific chromatin structural diversity, we used MAPit single-molecule footprinting, which simultaneously maps endogenous CG methylation and accessibility to M.CviPI at GC sites. Diverse chromatin structures were detected at the LANA, RTA and vIL6 promoters. At each locus, chromatin ranged from fully closed to fully open across the population. This diversity has not previously been reported in a virus. Phorbol ester and RTA transgene induction were used to identify chromatin conformations associated with reactivation of lytic transcription, which only a fraction of episomes had. Moreover, certain chromatin conformations correlated with CG methylation patterns at the RTA and vIL6 promoters. This indicated that some of the diverse chromatin conformations at these loci were epigenetically distinct. Finally, by comparing chromatin structures from a cell line infected with constitutively latent virus, we identified products of lytic replication. Our findings show that epigenetic drift can restrict viral propagation by chromatin compaction at latent and lytic promoters.


Journal of Biological Chemistry | 2012

Fibroblast Growth Factor Receptor 2 Homodimerization Rapidly Reduces Transcription of the Pluripotency Gene Nanog without Dissociation of Activating Transcription Factors

Katherine E. Santostefano; Takashi Hamazaki; Carolina E. Pardo; Michael P. Kladde; Naohiro Terada

Background: FGFR2-mediated Nanog gene repression plays a central role in cell fate regulation of blastocysts and ES cells. Results: FGFR2 homodimerization in ES cells rapidly down-regulated Nanog transcription without dissociation of active transcription factors. Conclusion: The data illustrate how FGFR2 can induce reversible Nanog down-regulation. Significance: The study provides insight underlying how FGFR2 dominates early cell fate decision in a potentially reversible manner. Nanog or Gata6-positive cells co-exist and are convertible within the inner cell mass of murine blastocysts and embryonic stem (ES) cells. Previous studies demonstrate fibroblast growth factor receptor 2 (FGFR2) triggers Nanog gene down-regulation and differentiation to primitive endoderm (PE); however, the underlying mechanisms responsible for reversible and fluctuating cell fate are poorly understood. Using an inducible FGFR2 dimerization system in ES cells, we demonstrate that FGFR2 activation rapidly down-regulated Nanog gene transcription through activation of the Mek pathway and subsequently differentiated ES cells into PE cells. FGFR2 rather selectively repressed the Nanog gene with minimal effect on other pluripotency genes, including Oct4 and Sox2. We determined the Nanog promoter region containing minimum Oct4/Sox2 binding sites was sufficient for this transcriptional down-regulation by FGFR2, when the reporter transgenes were integrated with insulators. Of interest, FGFR2-mediated Nanog transcriptional reduction occurred without dissociation of RNA polymerase II, p300, Oct4, Sox2, and Tet1 from the Nanog proximal promoter region and with no increase in repressive histone methylation marks or DNA methylation, implying the gene repression is in the early and transient phase. Furthermore, addition of a specific FGFR inhibitor readily reversed this Nanog repression status. These findings illustrate well how FGFR2 induces rapid but reversible Nanog repression within ES cells.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Restraint of angiogenesis by zinc finger transcription factor CTCF-dependent chromatin insulation

Ming Tang; Bo Chen; Tong Lin; Zhaozhong Li; Carolina E. Pardo; Christine Pampo; Jing Chen; Ching-Ling Lien; Lizi Wu; Lingbao Ai; Heiman Wang; Kai Yao; S. Paul Oh; Edward Seto; Lois E. H. Smith; Dietmar W. Siemann; Michael P. Kladde; Constance L. Cepko; Jianrong Lu

Angiogenesis is meticulously controlled by a fine balance between positive and negative regulatory activities. Vascular endothelial growth factor (VEGF) is a predominant angiogenic factor and its dosage is precisely regulated during normal vascular formation. In cancer, VEGF is commonly overproduced, resulting in abnormal neovascularization. VEGF is induced in response to various stimuli including hypoxia; however, very little is known about the mechanisms that confine its induction to ensure proper angiogenesis. Chromatin insulation is a key transcription mechanism that prevents promiscuous gene activation by interfering with the action of enhancers. Here we show that the chromatin insulator-binding factor CTCF binds to the proximal promoter of VEGF. Consistent with the enhancer-blocking mode of chromatin insulators, CTCF has little effect on basal expression of VEGF but specifically affects its activation by enhancers. CTCF knockdown cells are sensitized for induction of VEGF and exhibit elevated proangiogenic potential. Cancer-derived CTCF missense mutants are mostly defective in blocking enhancers at the VEGF locus. Moreover, during mouse retinal development, depletion of CTCF causes excess angiogenesis. Therefore, CTCF-mediated chromatin insulation acts as a crucial safeguard against hyperactivation of angiogenesis.


Current protocols in molecular biology | 2011

Simultaneous Single‐Molecule Mapping of Protein‐DNA Interactions and DNA Methylation by MAPit

Carolina E. Pardo; Russell P. Darst; Nancy H. Nabilsi; Amber L. Delmas; Michael P. Kladde

Sites of protein binding to DNA are inferred from footprints or spans of protection against a probing reagent. In most protocols, sites of accessibility to a probe are detected by mapping breaks in DNA strands. As discussed in this unit, such methods obscure molecular heterogeneity by averaging cuts at a given site over all DNA strands in a sample population. The DNA methyltransferase accessibility protocol for individual templates (MAPit), an alternative method described in this unit, localizes protein‐DNA interactions by probing with cytosine‐modifying DNA methyltransferases followed by bisulfite sequencing. Sequencing individual DNA products after amplification of bisulfite‐converted sequences permits assignment of the methylation status of every enzyme target site along a single DNA strand. Use of the GC‐methylating enzyme M.CviPI allows simultaneous mapping of chromatin accessibility and endogenous CpG methylation. MAPit is therefore the only footprinting method that can detect subpopulations of molecules with distinct patterns of protein binding or chromatin architecture and correlate them directly with the occurrence of endogenous methylation. Additional advantages of MAPit methylation footprinting as well as considerations for experimental design and potential sources of error are discussed. Curr. Protoc. Mol. Biol. 95:21.22.1‐21.22.18.


Methods of Molecular Biology | 2009

DNA methyltransferase probing of chromatin structure within populations and on single molecules.

Carolina E. Pardo; Scott A. Hoose; Santhi Pondugula; Michael P. Kladde

Non-invasive methods for mapping chromatin structure are necessary for creating an accurate view of genome function and dynamics in vivo. Ectopic induction of cytosine-5 DNA methyltransferases (C5 MTases) in Saccharomyces cerevisiae is a powerful technique for probing chromatin structure with minimal disruption to yeast physiology. Accessibility of MTases to their cognate sites is impaired based on the strength and span of the protein-DNA interaction to be probed. Methylated cytosines that resist chemical deamination are detected positively by the PCR-based technique of bisulfite genomic sequencing. PCR amplicons can be sequenced directly yielding an average m(5)C frequency or accessibility of each target site within the population, a technique termed methyltransferase accessibility protocol (MAP). More recently, the sequencing of cloned molecules in MAP for individual templates (MAPit) enables assignment of the methylation status of each target site along a continuous DNA strand from a single cell. The unique capability to score methylation at multiple sites in single molecules permits detection of inherent structural variability in chromatin. Here, MAPit analysis of the repressed and induced PHO5 promoter of budding yeast, using a C5 MTase with dinucleotide recognition specificity, reveals considerable cell-to-cell heterogeneity in chromatin structure. Substantial variation is observed in the extent to which the MTase gains entry to each of the nucleosomes positioned at PHO5, suggesting differences in their intrinsic thermodynamic stability in vivo. MAPit should be readily adaptable to the analysis of chromatin structure and non-histone protein-DNA interactions in a variety of model systems.


Methods in Enzymology | 2012

DNA methyltransferase accessibility protocol for individual templates by deep sequencing.

Russell P. Darst; Nancy H. Nabilsi; Carolina E. Pardo; Alberto Riva; Michael P. Kladde

A single-molecule probe of chromatin structure can uncover dynamic chromatin states and rare epigenetic variants of biological importance that bulk measures of chromatin structure miss. In bisulfite genomic sequencing, each sequenced clone records the methylation status of multiple sites on an individual molecule of DNA. An exogenous DNA methyltransferase can thus be used to image nucleosomes and other protein-DNA complexes. In this chapter, we describe the adaptation of this technique, termed Methylation Accessibility Protocol for individual templates, to modern high-throughput sequencing, which both simplifies the workflow and extends its utility.


Methods of Molecular Biology | 2012

Simultaneous Single-Molecule Detection of Endogenous C-5 DNA Methylation and Chromatin Accessibility Using MAPit

Russell P. Darst; Carolina E. Pardo; Santhi Pondugula; Vamsi K. Gangaraju; Nancy H. Nabilsi; Blaine Bartholomew; Michael P. Kladde

Bisulfite genomic sequencing provides a single-molecule view of cytosine methylation states. After deamination, each cloned molecule contains a record of methylation within its sequence. The full power of this technique is harnessed by treating nuclei with an exogenous DNMT prior to DNA extraction. This exogenous methylation marks regions of accessibility and footprints nucleosomes, as well as other DNA-binding proteins. Thus, each cloned molecule records not only the endogenous methylation present (at CG sites, in mammals), but also the exogenous (GC, when using the Chlorella virus protein M.CviPI). We term this technique MAPit, methylation accessibility protocol for individual templates.

Collaboration


Dive into the Carolina E. Pardo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin M. Siegel

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Ming Tang

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert G. Tsai

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge