Carolina Olid
Umeå University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carolina Olid.
Science of The Total Environment | 2010
Carolina Olid; Jordi Garcia-Orellana; Antonio Martínez-Cortizas; Pere Masqué; Eva Peiteado-Varela; Joan-Albert Sanchez-Cabeza
In order to estimate atmospheric metal deposition in Southern Europe since the beginning of the Industrial Period (~1850 AD), concentration profiles of Pb, Zn and Cu were determined in four (210)Pb-dated peat cores from ombrotrophic bogs in Serra do Xistral (Galicia, NW Iberian Peninsula). Maximum metal concentrations varied by a factor of 1.8 for Pb and Zn (70 to 128μgg(-1) and 128 to 231μgg(-1), respectively) and 3.5 for Cu (11 to 37μgg(-1)). The cumulative metal inventories of each core varied by a factor of 3 for all analysed metals (132 to 329μgcm(-2) for Pb, 198 to 625μgcm(-2) for Zn and 22 to 69μgcm(-2) for Cu), suggesting differences in net accumulation rates among peatlands. Although results suggest that mean deposition rates vary within the studied area, the enhanced (210)Pb accumulation and the interpretation of the inventory ratios ((210)Pb/Pb, Zn/Pb and Cu/Pb) in two bogs indicated that either a record perturbation or post-depositional redistribution effects must be considered. After correction, Pb, Zn and Cu profiles showed increasing concentrations and atmospheric fluxes since the mid-XX(th) century to maximum values in the second half of the XX(th) century. For Pb, maximum fluxes were observed in 1955-1962 and ranged from 16 to 22mgm(-2)yr(-1) (mean of 18±1mgm(-2)yr(-1)), two orders of magnitude higher than in the pre-industrial period. Peaks in Pb fluxes in Serra do Xistral before the period of maximum consumption of leaded petrol in Europe (1970s-1980s) suggest the dominance of local pollutant sources in the area (i.e. coal mining and burning). More recent peaks were observed for Zn and Cu, with fluxes ranging from 32 to 52mgm(-2)yr(-1) in 1989-1996, and from 4 to 9mgm(-2)yr(-1) in 1994-2001, respectively. Our results underline the importance of multi-core studies to assess both the integrity and reliability of peat records, and the degree of homogeneity in bog accumulation. We show the usefulness of using the excess (210)Pb inventory to distinguish between differential metal deposition, accumulation or anomalous peat records.
Environmental Science & Technology | 2010
Sebastien Rauch; Bernhard Peucker-Ehrenbrink; Malin E. Kylander; Dominik J. Weiss; Antonio Martínez-Cortizas; David Heslop; Carolina Olid; Tim M. Mighall; Harold F. Hemond
Osmium is among the least abundant elements in the Earths continental crust. Recent anthropogenic Os contamination of the environment from mining and smelting activities, automotive catalytic converter use, and hospital discharges has been documented. Here we present evidence for anthropogenic overprinting of the natural Os cycle using a ca. 7000-year record of atmospheric Os deposition and isotopic composition from an ombrotrophic peat bog in NW Spain. Preanthropogenic Os accumulation in this area is 0.10 +/- 0.04 ng m(-2) y(-1). The oldest strata showing human influence correspond to early metal mining and processing on the Iberian Peninsula (ca. 4700-2500 cal. BP). Elevated Os accumulation rates are found thereafter with a local maximum of 1.1 ng m(-2) y(-1) during the Roman occupation of the Iberian Peninsula (ca. 1930 cal. BP) and a further increase starting in 1750 AD with Os accumulation reaching 30 ng m(-2) y(-1) in the most recent samples. Osmium isotopic composition ((187)Os/(188)Os) indicates that recent elevated Os accumulation results from increased input of unradiogenic Os from industrial and automotive sources as well as from enhanced deposition of radiogenic Os through increased fossil fuel combustion and soil erosion. We posit that the rapid increase in catalyst-equipped vehicles, increased fossil fuel combustion, and changes in land-use make the changes observed in NW Spain globally relevant.
Science of The Total Environment | 2013
Carolina Olid; Jordi Garcia-Orellana; Pere Masqué; Antonio Martínez Cortizas; Joan-Albert Sanchez-Cabeza; Richard Bindler
The natural radionuclide (210)Pb is commonly used to establish accurate and precise chronologies for the recent (past 100-150 years) layers of peat deposits. The most widely used (210)Pb-dating model, Constant Rate of Supply (CRS), was applied using data from three peat cores from Chao de Lamoso, an ombrotrophic mire in Galicia (NW Spain). On the basis of the CRS-chronologies, maximum Pb concentrations and enrichment factors (EFs) occurred in the 1960s and late 1970s, consistent with the historical use of Pb. However, maximum Pb fluxes were dated in the 1940s and the late 1960s, 10 to 20 years earlier. Principal component analysis (PCA) showed that, although the (210)Pb distribution was mainly (74%) controlled by radioactive decay, about 20% of the (210)Pb flux variability was associated with atmospheric metal pollution, suggesting an extra (210)Pb supply source and thus invalidating the main assumption of the CRS model. When the CRS-ages were recalculated after correcting for the extra input from the (210)Pb inventory of the uppermost peat layers of each core, Pb flux variations were consistent with the historical atmospheric Pb deposition. Our results not only show the robustness of the CRS model to establish accurate chronologies of recent peat deposits but also provide evidence that there are confounding factors that might influence the calculation of reliable peat accumulation rates (and thus also element accumulation rates/fluxes). This study emphasizes the need to verify the hypotheses of (210)Pb-dating models and the usefulness of a full geochemical interpretation of peat bog records.
Scientific Reports | 2015
Erik J. Lundin; Jonatan Klaminder; David Bastviken; Carolina Olid; Sophia V. Hansson; Jan Karlsson
Lakes play an important role in the global carbon (C) cycle by burying C in sediments and emitting CO2 and CH4 to the atmosphere. The strengths and control of these fundamentally different pathways are therefore of interest when assessing the continental C balance and its response to environmental change. In this study, based on new high-resolution estimates in combination with literature data, we show that annual emission:burial ratios are generally ten times higher in boreal compared to subarctic – arctic lakes. These results suggest major differences in lake C cycling between biomes, as lakes in warmer boreal regions emit more and store relatively less C than lakes in colder arctic regions. Such effects are of major importance for understanding climatic feedbacks on the continental C sink – source function at high latitudes. If predictions of global warming and northward expansion of the boreal biome are correct, it is likely that increasing C emissions from high latitude lakes will partly counteract the presumed increasing terrestrial C sink capacity at high latitudes.
Science of The Total Environment | 2014
Sophia V. Hansson; James M. Kaste; Carolina Olid; Richard Bindler
Accurate dating of peat accumulation is essential for quantitatively reconstructing past changes in atmospheric metal deposition and carbon burial. By analyzing fallout radionuclides (210)Pb, (137)Cs, (241)Am, and (7)Be, and total Pb and Hg in 5 cores from two Swedish peatlands we addressed the consequence of estimating accumulation rates due to downwashing of atmospherically supplied elements within peat. The detection of (7)Be down to 18-20 cm for some cores, and the broad vertical distribution of (241)Am without a well-defined peak, suggest some downward transport by percolating rainwater and smearing of atmospherically deposited elements in the uppermost peat layers. Application of the CRS age-depth model leads to unrealistic peat mass accumulation rates (400-600 g m(-2) yr(-1)), and inaccurate estimates of past Pb and Hg deposition rates and trends, based on comparisons to deposition monitoring data (forest moss biomonitoring and wet deposition). After applying a newly proposed IP-CRS model that assumes a potential downward transport of (210)Pb through the uppermost peat layers, recent peat accumulation rates (200-300 g m(-2) yr(-1)) comparable to published values were obtained. Furthermore, the rates and temporal trends in Pb and Hg accumulation correspond more closely to monitoring data, although some off-set is still evident. We suggest that downwashing can be successfully traced using (7)Be, and if this information is incorporated into age-depth models, better calibration of peat records with monitoring data and better quantitative estimates of peat accumulation and past deposition are possible, although more work is needed to characterize how downwashing may vary between seasons or years.
Science of The Total Environment | 2016
Carolina Olid; David Diego; Jordi Garcia-Orellana; Antonio Martínez Cortizas; Jonatan Klaminder
The vertical distribution of (210)Pb is commonly used to date peat deposits accumulated over the last 100-150 years. However, several studies have questioned this method because of an apparent post-depositional mobility of (210)Pb within some peat profiles. In this study, we introduce the Initial Penetration–Constant Rate of Supply (IP-CRS) model for calculating ages derived from 210Pb profiles that are altered by an initial migration of the radionuclide. This new, two-phased, model describes the distribution of atmospheric-derived (210)Pb ((210)Pbxs) in peat taking into account both incorporation of (210)Pb into the accumulating peat matrix as well as an initial flushing of (210)Pb through the uppermost peat layers. The validity of the IP-CRS model is tested in four anomalous (210)Pb peat records that showed some deviations from the typical exponential decay profile not explained by variations in peat accumulation rates. Unlike the most commonly used (210)Pb-dating model (Constant Rate of Supply (CRS)), the IP-CRS model estimates peat accumulation rates consistent with typical growth rates for peatlands from the same areas. Confidence in the IP-CRS chronology is also provided by the good agreement with independent chronological markers (i.e. (241)Am and (137)Cs). Our results showed that the IP-CRS can provide chronologies from peat records where (210)Pb mobility is evident, being a valuable tool for studies reconstructing past environmental changes using peat archives during the Anthropocene.
Journal of Geophysical Research | 2014
Carolina Olid; Mats Nilsson; Tobias Eriksson; Jonatan Klaminder
Boreal peatlands are a major long-term reservoir of atmospheric carbon (C) and play an important role in the global C cycle. It is unclear how C accumulation in peatlands responds to changing tempe ...
The ISME Journal | 2018
Sylvain Monteux; James T. Weedon; Gesche Blume-Werry; Konstantin Gavazov; Vincent E. J. Jassey; Margareta Johansson; Frida Keuper; Carolina Olid; Ellen Dorrepaal
The decomposition of large stocks of soil organic carbon in thawing permafrost might depend on more than climate change-induced temperature increases: indirect effects of thawing via altered bacterial community structure (BCS) or rooting patterns are largely unexplored. We used a 10-year in situ permafrost thaw experiment and aerobic incubations to investigate alterations in BCS and potential respiration at different depths, and the extent to which they are related with each other and with root density. Active layer and permafrost BCS strongly differed, and the BCS in formerly frozen soils (below the natural thawfront) converged under induced deep thaw to strongly resemble the active layer BCS, possibly as a result of colonization by overlying microorganisms. Overall, respiration rates decreased with depth and soils showed lower potential respiration when subjected to deeper thaw, which we attributed to gradual labile carbon pool depletion. Despite deeper rooting under induced deep thaw, root density measurements did not improve soil chemistry-based models of potential respiration. However, BCS explained an additional unique portion of variation in respiration, particularly when accounting for differences in organic matter content. Our results suggest that by measuring bacterial community composition, we can improve both our understanding and the modeling of the permafrost carbon feedback.
Environmental Science & Technology | 2008
Carolina Olid; Jordi Garcia-Orellana; Antonio Martínez-Cortizas; Pere Masqué; Eva Peiteado; Joan-Albert Sanchez-Cabeza
Geophysical Research Letters | 2006
Jordi Garcia-Orellana; Eulàlia Gràcia; Alexis Vizcaino; Pere Masqué; Carolina Olid; Francisca Martínez-Ruiz; Elena Pinero; Joan-Albert Sanchez-Cabeza; Juanjo Dañobeitia