Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolina Schinke is active.

Publication


Featured researches published by Carolina Schinke.


Blood | 2012

Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations

Britta Will; Li Zhou; Thomas O. Vogler; Susanna Ben-Neriah; Carolina Schinke; Roni Tamari; Yiting Yu; Tushar D. Bhagat; Sanchari Bhattacharyya; Laura Barreyro; Christoph Heuck; Yonkai Mo; Samir Parekh; Christine McMahon; Andrea Pellagatti; Jacqueline Boultwood; Cristina Montagna; Lewis B. Silverman; Jaroslaw P. Maciejewski; John M. Greally; B. Hilda Ye; Alan F. List; Christian Steidl; Ulrich Steidl; Amit Verma

Even though hematopoietic stem cell (HSC) dysfunction is presumed in myelodysplastic syndrome (MDS), the exact nature of quantitative and qualitative alterations is unknown. We conducted a study of phenotypic and molecular alterations in highly fractionated stem and progenitor populations in a variety of MDS subtypes. We observed an expansion of the phenotypically primitive long-term HSCs (lineage(-)/CD34(+)/CD38(-)/CD90(+)) in MDS, which was most pronounced in higher-risk cases. These MDS HSCs demonstrated dysplastic clonogenic activity. Examination of progenitors revealed that lower-risk MDS is characterized by expansion of phenotypic common myeloid progenitors, whereas higher-risk cases revealed expansion of granulocyte-monocyte progenitors. Genome-wide analysis of sorted MDS HSCs revealed widespread methylomic and transcriptomic alterations. STAT3 was an aberrantly hypomethylated and overexpressed target that was validated in an independent cohort and found to be functionally relevant in MDS HSCs. FISH analysis demonstrated that a very high percentage of MDS HSC (92% ± 4%) carry cytogenetic abnormalities. Longitudinal analysis in a patient treated with 5-azacytidine revealed that karyotypically abnormal HSCs persist even during complete morphologic remission and that expansion of clonotypic HSCs precedes clinical relapse. This study demonstrates that stem and progenitor cells in MDS are characterized by stage-specific expansions and contain epigenetic and genetic alterations.


Melanoma Research | 2010

Aberrant DNA methylation in malignant melanoma

Carolina Schinke; Yongkai Mo; Yiting Yu; Kathy Amiri; Jeffrey A. Sosman; John M. Greally; Amit Verma

Malignant melanoma remains one of the most deadly human cancers with no effective cures for metastatic disease. The poor efficacy of current therapy in advanced melanoma highlights the need for better understanding of molecular mechanisms contributing to the disease. Recent work has shown that epigenetic changes, including aberrant DNA methylation, lead to alterations in gene expression and are as important in the development of malignant melanoma as the specific and well-characterized genetic events. Reversion of these methylation patterns could thus lead to a more targeted therapy and are currently under clinical investigation. The purpose of this review is to compile recent information on aberrant DNA methylation of melanoma, to highlight key genes and molecular pathways in melanoma development, which have been found to be epigenetically altered and to provide insight as to how DNA methylation might serve as targeted treatment option as well as a molecular and prognostic marker in malignant melanoma.


Blood | 2015

IL8-CXCR2 pathway inhibition as a therapeutic strategy against MDS and AML stem cells

Carolina Schinke; Orsolya Giricz; Weijuan Li; Aditi Shastri; Shanisha Gordon; Laura Barreyro; Laura Barreryo; Tushar D. Bhagat; Sanchari Bhattacharyya; Nandini Ramachandra; Matthias Bartenstein; Andrea Pellagatti; Jacqueline Boultwood; Amittha Wickrema; Yiting Yu; Britta Will; Sheng Wei; Ulrich Steidl; Amit Verma

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are associated with disease-initiating stem cells that are not eliminated by conventional therapies. Novel therapeutic targets against preleukemic stem cells need to be identified for potentially curative strategies. We conducted parallel transcriptional analysis of highly fractionated stem and progenitor populations in MDS, AML, and control samples and found interleukin 8 (IL8) to be consistently overexpressed in patient samples. The receptor for IL8, CXCR2, was also significantly increased in MDS CD34(+) cells from a large clinical cohort and was predictive of increased transfusion dependence. High CXCR2 expression was also an adverse prognostic factor in The Cancer Genome Atlas AML cohort, further pointing to the critical role of the IL8-CXCR2 axis in AML/MDS. Functionally, CXCR2 inhibition by knockdown and pharmacologic approaches led to a significant reduction in proliferation in several leukemic cell lines and primary MDS/AML samples via induction of G0/G1 cell cycle arrest. Importantly, inhibition of CXCR2 selectively inhibited immature hematopoietic stem cells from MDS/AML samples without an effect on healthy controls. CXCR2 knockdown also impaired leukemic growth in vivo. Together, these studies demonstrate that the IL8 receptor CXCR2 is an adverse prognostic factor in MDS/AML and is a potential therapeutic target against immature leukemic stem cell-enriched cell fractions in MDS and AML.


Journal of Immunology | 2013

Myeloma Is Characterized by Stage-Specific Alterations in DNA Methylation That Occur Early during Myelomagenesis

Christoph Heuck; Jayesh Mehta; Tushar D. Bhagat; Krishna Gundabolu; Yiting Yu; Shahper N. Khan; Grigoris Chrysofakis; Carolina Schinke; Joseph Tariman; Eric Vickrey; Natalie Pulliam; Sangeeta Nischal; Li Zhou; Sanchari Bhattacharyya; Richard Meagher; Caroline Hu; Shahina Maqbool; Masako Suzuki; Samir Parekh; Frederic J. Reu; Ulrich Steidl; John M. Greally; Amit Verma; Seema Singhal

Epigenetic changes play important roles in carcinogenesis and influence initial steps in neoplastic transformation by altering genome stability and regulating gene expression. To characterize epigenomic changes during the transformation of normal plasma cells to myeloma, we modified the HpaII tiny fragment enrichment by ligation–mediated PCR assay to work with small numbers of purified primary marrow plasma cells. The nano-HpaII tiny fragment enrichment by ligation–mediated PCR assay was used to analyze the methylome of CD138+ cells from 56 subjects representing premalignant (monoclonal gammopathy of uncertain significance), early, and advanced stages of myeloma, as well as healthy controls. Plasma cells from premalignant and early stages of myeloma were characterized by striking, widespread hypomethylation. Gene-specific hypermethylation was seen to occur in the advanced stages, and cell lines representative of relapsed cases were found to be sensitive to decitabine. Aberrant demethylation in monoclonal gammopathy of uncertain significance occurred primarily in CpG islands, whereas differentially methylated loci in cases of myeloma occurred predominantly outside of CpG islands and affected distinct sets of gene pathways, demonstrating qualitative epigenetic differences between premalignant and malignant stages. Examination of the methylation machinery revealed that the methyltransferase, DNMT3A, was aberrantly hypermethylated and underexpressed, but not mutated in myeloma. DNMT3A underexpression was also associated with adverse overall survival in a large cohort of patients, providing insights into genesis of hypomethylation in myeloma. These results demonstrate widespread, stage-specific epigenetic changes during myelomagenesis and suggest that early demethylation can be a potential contributor to genome instability seen in myeloma. We also identify DNMT3A expression as a novel prognostic biomarker and suggest that relapsed cases can be therapeutically targeted by hypomethylating agents.


Blood | 2016

Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma.

Niels Weinhold; Cody Ashby; Leo Rasche; Shweta S. Chavan; Caleb K. Stein; Owen Stephens; Ruslana Tytarenko; Michael Bauer; Tobias Meissner; Shayu Deshpande; Purvi Patel; Timea Buzder; Gabor Molnar; Erich Allen Peterson; van Rhee F; Maurizio Zangari; Sharmilan Thanendrarajan; Carolina Schinke; Erming Tian; Joshua Epstein; Bart Barlogie; Faith E. Davies; Christoph Heuck; Brian A. Walker; Gareth J. Morgan

To elucidate the mechanisms underlying relapse from chemotherapy in multiple myeloma, we performed a longitudinal study of 33 patients entered into Total Therapy protocols investigating them using gene expression profiling, high-resolution copy number arrays, and whole-exome sequencing. The study illustrates the mechanistic importance of acquired mutations in known myeloma driver genes and the critical nature of biallelic inactivation events affecting tumor suppressor genes, especially TP53, the end result being resistance to apoptosis and increased proliferation rates, which drive relapse by Darwinian-type clonal evolution. The number of copy number aberration changes and biallelic inactivation of tumor suppressor genes was increased in GEP70 high risk, consistent with genomic instability being a key feature of high risk. In conclusion, the study highlights the impact of acquired genetic events, which enhance the evolutionary fitness level of myeloma-propagating cells to survive multiagent chemotherapy and to result in relapse.


Journal of Hematology & Oncology | 2013

Signal transduction inhibitors in treatment of myelodysplastic syndromes

Lohith S. Bachegowda; Oleg Gligich; Ionnis Mantzaris; Carolina Schinke; Dale Wyville; Tatiana Carrillo; Ira Braunschweig; Ulrich Steidl; Amit Verma

Myelodysplastic syndromes (MDS) are a group of hematologic disorders characterized by ineffective hematopoiesis that results in reduced blood counts. Although MDS can transform into leukemia, most of the morbidity experienced by these patients is due to chronically low blood counts. Conventional cytotoxic agents used to treat MDS have yielded some encouraging results but are characterized by many adverse effects in the predominantly elderly patient population. Targeted interventions aimed at reversing the bone marrow failure and increasing the peripheral blood counts would be advantageous in this cohort of patients. Studies have demonstrated over-activated signaling of myelo-suppressive cytokines such as TGF-β, TNF-α and Interferons in MDS hematopoietic stem cells. Targeting these signaling cascades could be potentially therapeutic in MDS. The p38 MAP kinase pathway, which is constitutively activated in MDS, is an example of cytokine stimulated kinase that promotes aberrant apoptosis of stem and progenitor cells in MDS. ARRY-614 and SCIO-469 are p38 MAPK inhibitors that have been used in clinical trials and have shown activity in a subset of MDS patients. TGF-β signaling has been therapeutically targeted by small molecule inhibitor of the TGF-β receptor kinase, LY-2157299, with encouraging preclinical results. Apart from TGF-β receptor kinase inhibition, members of TGF-β super family and BMP ligands have also been targeted by ligand trap compounds like Sotatercept (ACE-011) and ACE-536. The multikinase inhibitor, ON-01910.Na (Rigosertib) has demonstrated early signs of efficacy in reducing the percentage of leukemic blasts and is in advanced stages of clinical testing. Temsirolimus, Deforolimus and other mTOR inhibitors are being tested in clinical trials and have shown preclinical efficacy in CMML. EGF receptor inhibitors, Erlotinib and Gefitinib have shown efficacy in small trials that may be related to off target effects. Cell cycle regulator inhibitors such as Farnesyl transferase inhibitors (Tipifarnib, Lonafarnib) and MEK inhibitor (GSK1120212) have shown acceptable toxicity profiles in small studies and efforts are underway to select mutational subgroups of MDS and AML that may benefit from these inhibitors. Altogether, these studies show that targeting various signal transduction pathways that regulate hematopoiesis offers promising therapeutic potential in this disease. Future studies in combination with high resolution correlative studies will clarify the subgroup specific efficacies of these agents.


Nature Communications | 2017

Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing

Leo Rasche; Shweta S. Chavan; Owen Stephens; Purvi Patel; Ruslana Tytarenko; Cody Ashby; Michael Bauer; Caleb K. Stein; Shayu Deshpande; Christopher P. Wardell; Timea Buzder; Gabor Molnar; Maurizio Zangari; Fritz Van Rhee; Sharmilan Thanendrarajan; Carolina Schinke; Joshua Epstein; Faith E. Davies; Brian A. Walker; Tobias Meissner; Bart Barlogie; Gareth J. Morgan; Niels Weinhold

In multiple myeloma malignant plasma cells expand within the bone marrow. Since this site is well-perfused, a rapid dissemination of “fitter” clones may be anticipated. However, an imbalanced distribution of multiple myeloma is frequently observed in medical imaging. Here, we perform multi-region sequencing, including iliac crest and radiology-guided focal lesion specimens from 51 patients to gain insight into the spatial clonal architecture. We demonstrate spatial genomic heterogeneity in more than 75% of patients, including inactivation of CDKN2C and TP53, and mutations affecting mitogen-activated protein kinase genes. We show that the extent of spatial heterogeneity is positively associated with the size of biopsied focal lesions consistent with regional outgrowth of advanced clones. The results support a model for multiple myeloma progression with clonal sweeps in the early phase and regional evolution in advanced disease. We suggest that multi-region investigations are critical to understanding intra-patient heterogeneity and the evolutionary processes in multiple myeloma.In multiple myeloma, malignant cells expand within bone marrow. Here, the authors use multi-region sequencing in patient samples to analyse spatial clonal architecture and heterogeneity, providing novel insight into multiple myeloma progression and evolution.


Oncogene | 2014

Stem cell origin of myelodysplastic syndromes

Harold Elias; Carolina Schinke; Sanchari Bhattacharyya; Britta Will; Amit Verma; Ulrich Steidl

Myelodysplastic syndromes (MDS) are common hematologic disorders that are characterized by decreased blood counts due to ineffective hematopoiesis. MDS is considered a ‘preleukemic’ disorder linked to a significantly elevated risk of developing an overt acute leukemia. Cytopenias can be observed in all three myeloid lineages suggesting the involvement of multipotent, immature hematopoietic cells in the pathophysiology of this disease. Recent studies using murine models of MDS as well as primary patient-derived bone marrow samples have provided direct evidence that the most immature, self-renewing hematopoietic stem cells (HSC), as well as lineage-committed progenitor cells, are critically altered in patients with MDS. Besides significant changes in the number and distribution of stem as well as immature progenitor cells, genetic and epigenetic aberrations have been identified, which confer functional changes to these aberrant stem cells, impairing their ability to proliferate and differentiate. Most importantly, aberrant stem cells can persist and further expand after treatment, even upon transient achievement of clinical complete remission, pointing to a critical role of these cells in disease relapse. Ongoing preclinical and clinical studies are particularly focusing on the precise molecular and functional characterization of aberrant MDS stem cells in response to therapy, with the goal to develop stem cell-targeted strategies for therapy and disease monitoring that will allow for achievement of longer-lasting remissions in MDS.


Clinical Cancer Research | 2017

Assessment of Total Lesion Glycolysis by 18F FDG PET/CT Significantly Improves Prognostic Value of GEP and ISS in Myeloma

James E. McDonald; Marcus M. Kessler; Michael W. Gardner; Amy Buros; James A. Ntambi; Sarah Waheed; Frits van Rhee; Maurizio Zangari; Christoph Heuck; Nathan Petty; Carolina Schinke; Sharmilan Thanendrarajan; Alan Mitchell; Antje Hoering; Bart Barlogie; Gareth J. Morgan; Faith E. Davies

Purpose: Fluorine-18 fluorodeoxyglucose positron emission tomography with CT attenuation correction (18F-FDG PET/CT) is useful in the detection and enumeration of focal lesions and in semiquantitative characterization of metabolic activity (glycolytic phenotype) by calculation of glucose uptake. Total lesion glycolysis (TLG) and metabolic tumor volume (MTV) have the potential to improve the value of this approach and enhance the prognostic value of disease burden measures. This study aims to determine whether TLG and MTV are associated with progression-free survival (PFS) and overall survival (OS), and whether they improve risk assessments such as International Staging System (ISS) stage and GEP70 risk. Experimental Design: 192 patients underwent whole body PET/CT in the Total Therapy 3A (TT3A) trial and were evaluated using three-dimensional region-of-interest analysis with TLG, MTV, and standard measurement parameters derived for all focal lesions with peak SUV above the background red marrow signal. Results: In multivariate analysis, baseline TLG > 620 g and MTV > 210 cm3 remained a significant factor of poor PFS and OS after adjusting for baseline myeloma variables. Combined with the GEP70 risk score, TLG > 205 g identifies a high-risk–behaving subgroup with poor expected survival. In addition, TLG > 205 g accurately divides ISS stage II patients into two subgroups with similar outcomes to ISS stage I and ISS stage III, respectively. Conclusions: TLG and MTV have significant survival implications at baseline and offer a more precise quantitation of the glycolytic phenotype of active disease. These measures can be assessed more readily than before using FDA-approved software and should be standardized and incorporated into clinical trials moving forward. Clin Cancer Res; 23(8); 1981–7. ©2016 AACR.


Cancer Research | 2016

Pexmetinib: A Novel Dual Inhibitor of Tie2 and p38 MAPK with Efficacy in Preclinical Models of Myelodysplastic Syndromes and Acute Myeloid Leukemia.

Lohith S. Bachegowda; Kerry Morrone; Shannon L. Winski; Ioannis Mantzaris; Matthias Bartenstein; Nandini Ramachandra; Orsi Giricz; Vineeth Sukrithan; George Nwankwo; Samira Shahnaz; Tushar D. Bhagat; Sanchari Bhattacharyya; Amer Assal; Aditi Shastri; Shanisha Gordon-Mitchell; Andrea Pellagatti; Jacqueline Boultwood; Carolina Schinke; Yiting Yu; Chandan Guha; James P. Rizzi; Jennifer Garrus; Suzy Brown; Lance Wollenberg; Grant Hogeland; Dale Wright; Mark Munson; Mareli Rodriguez; Stefan Gross; David Chantry

Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) suppress normal hematopoietic activity in part by enabling a pathogenic inflammatory milieu in the bone marrow. In this report, we show that elevation of angiopoietin-1 in myelodysplastic CD34(+) stem-like cells is associated with higher risk disease and reduced overall survival in MDS and AML patients. Increased angiopoietin-1 expression was associated with a transcriptomic signature similar to known MDS/AML stem-like cell profiles. In seeking a small-molecule inhibitor of this pathway, we discovered and validated pexmetinib (ARRY-614), an inhibitor of the angiopoietin-1 receptor Tie-2, which was also found to inhibit the proinflammatory kinase p38 MAPK (which is overactivated in MDS). Pexmetinib inhibited leukemic proliferation, prevented activation of downstream effector kinases, and abrogated the effects of TNFα on healthy hematopoietic stem cells. Notably, treatment of primary MDS specimens with this compound stimulated hematopoiesis. Our results provide preclinical proof of concept for pexmetinib as a Tie-2/p38 MAPK dual inhibitor applicable to the treatment of MDS/AML. Cancer Res; 76(16); 4841-9. ©2016 AACR.

Collaboration


Dive into the Carolina Schinke's collaboration.

Top Co-Authors

Avatar

Faith E. Davies

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Maurizio Zangari

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Gareth J. Morgan

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Sharmilan Thanendrarajan

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Frits van Rhee

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Bart Barlogie

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Niels Weinhold

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Christoph Heuck

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Joshua Epstein

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Amit Verma

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge