Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolina Stenfeldt is active.

Publication


Featured researches published by Carolina Stenfeldt.


Journal of Virology | 2016

The Foot-and-Mouth Disease Carrier State Divergence in Cattle

Carolina Stenfeldt; Michael Eschbaumer; Steven I. Rekant; Juan M. Pacheco; George R. Smoliga; Ethan J. Hartwig; Luis L. Rodriguez; Jonathan Arzt

ABSTRACT The pathogenesis of persistent foot-and-mouth disease virus (FMDV) infection was investigated in 46 cattle that were either naive or had been vaccinated using a recombinant, adenovirus-vectored vaccine 2 weeks before challenge. The prevalence of FMDV persistence was similar in both groups (62% in vaccinated cattle, 67% in nonvaccinated cattle), despite vaccinated cattle having been protected from clinical disease. Analysis of antemortem infection dynamics demonstrated that the subclinical divergence between FMDV carriers and animals that cleared the infection had occurred by 10 days postinfection (dpi) in vaccinated cattle and by 21 dpi in nonvaccinated animals. The anatomic distribution of virus in subclinically infected, vaccinated cattle was restricted to the pharynx throughout both the early and the persistent phases of infection. In nonvaccinated cattle, systemically disseminated virus was cleared from peripheral sites by 10 dpi, while virus selectively persisted within the nasopharynx of a subset of animals. The quantities of viral RNA shed in oropharyngeal fluid during FMDV persistence were similar in vaccinated and nonvaccinated cattle. FMDV structural and nonstructural proteins were localized to follicle-associated epithelium of the dorsal soft palate and dorsal nasopharynx in persistently infected cattle. Host transcriptome analysis of tissue samples processed by laser capture microdissection indicated suppression of antiviral host factors (interferon regulatory factor 7, CXCL10 [gamma interferon-inducible protein 10], gamma interferon, and lambda interferon) in association with persistent FMDV. In contrast, during the transitional phase of infection, the level of expression of IFN-λ mRNA was higher in follicle-associated epithelium of animals that had cleared the infection. This work provides novel insights into the intricate mechanisms of FMDV persistence and contributes to further understanding of this critical aspect of FMDV pathogenesis. IMPORTANCE The existence of a prolonged, asymptomatic carrier state is a political impediment for control and potential eradication of foot-and-mouth disease (FMD). When FMD outbreaks occur, they are often extinguished by massive depopulation of livestock due to the fear that some animals may have undiagnosed subclinical infection, despite uncertainty over the biological relevance of FMD virus (FMDV) persistence. The work described here elucidates aspects of the FMDV carrier state in cattle which may facilitate identification and/or abrogation of asymptomatic FMDV infection. The divergence between animals that clear infection and those that develop persistent infection was demonstrated to occur earlier than previously established. The host antiviral response in tissues maintaining persistent FMDV was downregulated, whereas upregulation of IFN-λ mRNA was found in the epithelium of cattle that had recently cleared the infection. This suggests that the clearing of FMDV infection is associated with an enhanced mucosal antiviral response, whereas FMDV persistence is associated with suppression of the host antiviral response.


PLOS ONE | 2015

Persistent Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Cattle; Tissue-Specific Distribution and Local Cytokine Expression

Juan M. Pacheco; George R. Smoliga; Vivian O’Donnell; Barbara Brito; Carolina Stenfeldt; Luis L. Rodriguez; Jonathan Arzt

Tissues obtained post-mortem from cattle persistently infected with foot-and-mouth disease virus (FMDV) were analyzed to characterize the tissue-specific localization of FMDV and partial transcriptome profiles for selected immunoregulatory cytokines. Analysis of 28 distinct anatomic sites from 21 steers infected with FMDV serotype A, O or SAT2, had the highest prevalence of overall viral detection in the dorsal nasopharynx (80.95%) and dorsal soft palate (71.43%). FMDV was less frequently detected in laryngeal mucosal tissues, oropharyngeal mucosal sites, and lymph nodes draining the pharynx. Immunomicroscopy indicated that within persistently infected mucosal tissues, FMDV antigens were rarely detectable within few epithelial cells in regions of mucosa-associated lymphoid tissue (MALT). Transcriptome analysis of persistently infected pharyngeal tissues by qRT-PCR for 14 cytokine genes indicated a general trend of decreased mRNA levels compared to uninfected control animals. Although, statistically significant differences were not observed, greatest suppression of relative expression (RE) was identified for IP-10 (RE = 0.198), IFN-β (RE = 0.269), IL-12 (RE = 0.275), and IL-2 (RE = 0.312). Increased relative expression was detected for IL-6 (RE = 2.065). Overall, this data demonstrates that during the FMDV carrier state in cattle, viral persistence is associated with epithelial cells of the nasopharynx in the upper respiratory tract and decreased levels of mRNA for several immunoregulatory cytokines in the infected tissues.


PLOS ONE | 2015

Pathogenesis of Primary Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Vaccinated and Non-Vaccinated Cattle.

Carolina Stenfeldt; Michael Eschbaumer; Juan M. Pacheco; Steven I. Rekant; Luis L. Rodriguez; Jonathan Arzt

A time-course pathogenesis study was performed to compare and contrast primary foot-and-mouth disease virus (FMDV) infection following simulated-natural (intra-nasopharyngeal) virus exposure of cattle that were non-vaccinated or vaccinated using a recombinant adenovirus-vectored FMDV vaccine. FMDV genome and infectious virus were detected during the initial phase of infection in both categories of animals with consistent predilection for the nasopharyngeal mucosa. A rapid progression of infection with viremia and widespread dissemination of virus occurred in non-vaccinated animals whilst vaccinated cattle were protected from viremia and clinical FMD. Analysis of micro-anatomic distribution of virus during early infection by lasercapture microdissection localized FMDV RNA to follicle-associated epithelium of the nasopharyngeal mucosa in both groups of animals, with concurrent detection of viral genome in nasopharyngeal MALT follicles in vaccinated cattle only. FMDV structural and non-structural proteins were detected in epithelial cells of the nasopharyngeal mucosa by immunomicroscopy 24 hours after inoculation in both non-vaccinated and vaccinated steers. Co-localization of CD11c+/MHC II+ cells with viral protein occurred early at primary infection sites in vaccinated steers while similar host-virus interactions were observed at later time points in non-vaccinated steers. Additionally, numerous CD8+/CD3- host cells, representing presumptive natural killer cells, were observed in association with foci of primary FMDV infection in the nasopharyngeal mucosa of vaccinated steers but were absent in non-vaccinated steers. Immunomicroscopic evidence of an activated antiviral response at primary infection sites of vaccinated cattle was corroborated by a relative induction of interferon -α, -β, -γ and -λ mRNA in micro-dissected samples of nasopharyngeal mucosa. Although vaccination protected cattle from viremia and clinical FMD, there was subclinical infection of epithelial cells of the nasopharyngeal mucosa that could enable shedding and long-term persistence of infectious virus. Additionally, these data indicate different mechanisms within the immediate host response to infection between non-vaccinated and vaccinated cattle.


Research in Veterinary Science | 2014

Infection dynamics of foot-and-mouth disease virus in pigs using two novel simulated-natural inoculation methods.

Carolina Stenfeldt; Juan M. Pacheco; Luis L. Rodriguez; Jonathan Arzt

In order to characterize foot-and-mouth disease virus (FMDV) infection dynamics in pigs, two simulated-natural inoculation systems were developed and evaluated. Intra-oropharyngeal (IOP) and intra-nasopharyngeal (INP) inoculation both enabled precise control of dose and timing of inoculation while simulating field exposure conditions. There were substantial differences between outcomes of infections by the two routes. IOP inoculation resulted in consistent and synchronous infection, whereas INP inoculation at similar doses resulted in delayed, or completely absent infection. All pigs that developed clinical infection had detectable levels of FMDV RNA in their oropharynx directly following inoculation. Furthermore, FMDV antigens were localized to the oropharyngeal tonsils suggesting a role in early infection. The utility of IOP inoculation was further demonstrated in a vaccine-challenge experiment. Thus, the novel system of IOP inoculation described herein, offers a valid alternative to traditionally used systems for FMDV inoculation of pigs, applicable for experimental studies of FMDV pathogenesis and vaccinology.


Veterinary Microbiology | 2017

Foot-and-mouth disease vaccines.

Fayna Diaz-San Segundo; Gisselle N. Medina; Carolina Stenfeldt; Jonathan Arzt; Teresa de los Santos

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. The disease affects many areas of the world, often causing extensive epizootics in livestock, mostly farmed cattle and swine, although sheep, goats and many wild species are also susceptible. In countries where food and farm animals are essential for subsistence agriculture, outbreaks of FMD seriously impact food security and development. In highly industrialized developed nations, FMD endemics cause economic and social devastation mainly due to observance of health measures adopted from the World Organization for Animal Health (OIE). High morbidity, complex host-range and broad genetic diversity make FMD prevention and control exceptionally challenging. In this article we review multiple vaccine approaches developed over the years ultimately aimed to successfully control and eradicate this feared disease.


Frontiers in Veterinary Science | 2016

The Pathogenesis of Foot-and-Mouth Disease in Pigs

Carolina Stenfeldt; Fayna Diaz-San Segundo; Teresa de los Santos; Luis L. Rodriguez; Jonathan Arzt

The greatest proportion of foot-and-mouth disease (FMD) clinical research has been dedicated to elucidating pathogenesis and enhancing vaccine protection in cattle with less efforts invested in studies specific to pigs. However, accumulated evidence from FMD outbreaks and experimental investigations suggest that critical components of FMD pathogenesis, immunology, and vaccinology cannot be extrapolated from investigations performed in cattle to explain or to predict outcomes of infection or vaccination in pigs. Furthermore, it has been shown that failure to account for these differences may have substantial consequences when FMD outbreaks occur in areas with dense pig populations. Recent experimental studies have confirmed some aspects of conventional wisdom by demonstrating that pigs are more susceptible to FMD virus (FMDV) infection via exposure of the upper gastrointestinal tract (oropharynx) than through inhalation of virus. The infection spreads rapidly within groups of pigs that are housed together, although efficiency of transmission may vary depending on virus strain and exposure intensity. Multiple investigations have demonstrated that physical separation of pigs is sufficient to prevent virus transmission under experimental conditions. Detailed pathogenesis studies have recently demonstrated that specialized epithelium within porcine oropharyngeal tonsils constitute the primary infection sites following simulated natural virus exposure. Furthermore, epithelium of the tonsil of the soft palate supports substantial virus replication during the clinical phase of infection, thus providing large amounts of virus that can be shed into the environment. Due to massive amplification and shedding of virus, acutely infected pigs constitute a considerable source of contagion. FMDV infection results in modulation of several components of the host immune response. The infection is ultimately cleared in association with a strong humoral response and, in contrast to ruminants, there is no subclinical persistence of FMDV in pigs. The aim of this review is to provide an overview of knowledge gained from experimental investigations of FMD pathogenesis, transmission, and host response in pigs. Details of the temporo-anatomic progression of infection are discussed in relation to specific pathogenesis events and the likelihood of transmission. Additionally, relevant aspects of the host immune response are discussed within contexts of conventional and novel intervention strategies of vaccination and immunomodulation.


PLOS ONE | 2017

First detection of foot-and-mouth disease virus O/Ind-2001d in Vietnam

Le T. Vu; Ngo Thanh Long; Barbara Brito; Carolina Stenfeldt; Nguyen T. Phuong; Bui H. Hoang; Steven J. Pauszek; Ethan J. Hartwig; George R. Smoliga; Pham Phong Vu; Le T. V. Quang; Vo V. Hung; Nguyen Dac Tho; Pham V. Dong; Phan Q. Minh; Miranda R. Bertram; Ian H. Fish; Luis L. Rodriguez; Do H. Dung; Jonathan Arzt

In recent years, foot-and-mouth disease virus (FMDV) serotype O, topotype Middle East-South Asia (ME-SA), lineage Ind-2001d has spread from the Indian subcontinent to the Middle East, North Africa, and Southeast Asia. In the current report, we describe the first detection of this lineage in Vietnam in May, 2015 in Đắk Nông province. Three subsequent outbreaks caused by genetically related viruses occurred between May–October, 2015 after which the virus was not detected in clinical outbreaks for at least 15 subsequent months. The observed outbreaks affected (in chronological order): cattle in Đắk Nông province, pigs in Đắk Lắk province and Đắk Nông province, and cattle in Ninh Thuận province. The clinical syndromes associated with these outbreaks were consistent with typical FMD in the affected species. Overall attack rate on affected premises was 0.85 in pigs and 0.93 in cattle over the course of the outbreak. Amongst 378 pigs at risk on affected premises, 85 pigs died during the outbreaks; there were no deaths among cattle. The manner in which FMDV/O/ME-SA/Ind-2001d was introduced into Vietnam remains undetermined; however, movement of live cattle is the suspected route. This incursion has substantial implications for epidemiology and control of FMD in Southeast Asia.


Journal of Comparative Pathology | 2016

Infection Dynamics of Foot-and-Mouth Disease Virus in Cattle Following Intranasopharyngeal Inoculation or Contact Exposure

Juan M. Pacheco; Carolina Stenfeldt; Luis L. Rodriguez; Jonathan Arzt

For the purpose of developing an improved experimental model for studies of foot-and-mouth disease virus (FMDV) infection in cattle, three different experimental systems based on natural or simulated natural virus exposure were compared under standardized experimental conditions. Ante-mortem infection dynamics were characterized in cattle exposed to FMDV through a novel, simulated natural intranasopharyngeal (INP) inoculation system or through standardized and controlled systems of within- or between-species direct contact exposure (cattle-to-cattle or pig-to-cattle). All three systems were efficient in causing synchronous, generalized foot-and-mouth disease in cattle exposed to one of three different strains of FMDV representing serotypes O, A and Asia1. There was more within-group variation in the timing of clinical infection following natural and simulated natural virus exposure systems when compared with the conventionally used system of needle inoculation (intraepithelial lingual inoculation). However, the three optimized exposure systems described herein have the advantage of closely simulating field conditions by utilizing natural routes of primary infection, thereby facilitating engagement of mucosal host defence mechanisms. Overall, it is concluded that INP inoculation and standardized systems of direct contact exposure provide effective alternatives to conventional (needle) inoculation systems for studies in which it is desirable to simulate the natural biology of FMDV infection.


Veterinary Research | 2017

Phylodynamics of foot-and-mouth disease virus O/PanAsia in Vietnam 2010-2014

Barbara Brito; Steven J. Pauszek; Michael Eschbaumer; Carolina Stenfeldt; Helena C. de Carvalho Ferreira; Le T. Vu; Nguyen T. Phuong; Bui H. Hoang; Nguyen Dac Tho; Pham V. Dong; Phan Q. Minh; Ngo Thanh Long; Donald P. King; Nick J. Knowles; Do H. Dung; Luis L. Rodriguez; Jonathan Arzt

Foot-and-mouth disease virus (FMDV) is endemic in Vietnam, a country that plays an important role in livestock trade within Southeast Asia. The large populations of FMDV-susceptible species in Vietnam are important components of food production and of the national livelihood. In this study, we investigated the phylogeny of FMDV O/PanAsia in Vietnam, reconstructing the virus’ ancestral host species (pig, cattle or buffalo), clinical stage (subclinical carrier or clinically affected) and geographical location. Phylogenetic divergence time estimation and character state reconstruction analyses suggest that movement of viruses between species differ. While inferred transmissions from cattle to buffalo and pigs and from pigs to cattle are well supported, transmission from buffalo to other species, and from pigs to buffalo may be less frequent. Geographical movements of FMDV O/PanAsia virus appears to occur in all directions within the country, with the South Central Coast and the Northeast regions playing a more important role in FMDV O/PanAsia spread. Genetic selection of variants with changes at specific sites within FMDV VP1 coding region was different depending on host groups analyzed. The overall ratio of non-synonymous to synonymous nucleotide changes was greater in pigs compared to cattle and buffalo, whereas a higher number of individual amino acid sites under positive selection were detected in persistently infected, subclinical animals compared to viruses collected from clinically diseased animals. These results provide novel insights to understand FMDV evolution and its association with viral spread within endemic countries. These findings may support animal health organizations in their endeavor to design animal disease control strategies in response to outbreaks.


PLOS ONE | 2016

Transcriptomic Analysis of Persistent Infection with Foot-and-Mouth Disease Virus in Cattle Suggests Impairment of Apoptosis and Cell-Mediated Immunity in the Nasopharynx

Michael Eschbaumer; Carolina Stenfeldt; George R. Smoliga; Juan M. Pacheco; Luis L. Rodriguez; Robert W. Li; J. J. Zhu; Jonathan Arzt

In order to investigate the mechanisms of persistent foot-and-mouth disease virus (FMDV) infection in cattle, transcriptome alterations associated with the FMDV carrier state were characterized using a bovine whole-transcriptome microarray. Eighteen cattle (8 vaccinated with a recombinant FMDV A vaccine, 10 non-vaccinated) were challenged with FMDV A24 Cruzeiro, and the gene expression profiles of nasopharyngeal tissues collected between 21 and 35 days after challenge were compared between 11 persistently infected carriers and 7 non-carriers. Carriers and non-carriers were further compared to 2 naïve animals that had been neither vaccinated nor challenged. At a controlled false-discovery rate of 10% and a minimum difference in expression of 50%, 648 genes were differentially expressed between FMDV carriers and non-carriers, and most (467) had higher expression in carriers. Among these, genes associated with cellular proliferation and the immune response–such as chemokines, cytokines and genes regulating T and B cells–were significantly overrepresented. Differential gene expression was significantly correlated between non-vaccinated and vaccinated animals (biological correlation +0.97), indicating a similar transcriptome profile across these groups. Genes related to prostaglandin E2 production and the induction of regulatory T cells were overexpressed in carriers. In contrast, tissues from non-carrier animals expressed higher levels of complement regulators and pro-apoptotic genes that could promote virus clearance. Based on these findings, we propose a working hypothesis for FMDV persistence in nasopharyngeal tissues of cattle, in which the virus may be maintained by an impairment of apoptosis and the local suppression of cell-mediated antiviral immunity by inducible regulatory T cells.

Collaboration


Dive into the Carolina Stenfeldt's collaboration.

Top Co-Authors

Avatar

Jonathan Arzt

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Luis L. Rodriguez

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Juan M. Pacheco

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

George R. Smoliga

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Barbara Brito

Oak Ridge Institute for Science and Education

View shared research outputs
Top Co-Authors

Avatar

Steven J. Pauszek

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Ethan J. Hartwig

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Michael Eschbaumer

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar

Miranda R. Bertram

Oak Ridge Institute for Science and Education

View shared research outputs
Top Co-Authors

Avatar

Do H. Dung

Ministry of Agriculture and Rural Development

View shared research outputs
Researchain Logo
Decentralizing Knowledge